Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T02:15:24.630Z Has data issue: false hasContentIssue false

Effect of Placement Method and Rate of Application of Crushed Fish Bones on the Activity of Predatory Ants and Impact on Termite Damage to Maize

Published online by Cambridge University Press:  19 September 2011

M. B. Sekamatte
Affiliation:
Namulonge Agricultural and Animal Production Research Institute, P.O. Box 7084, Kampala, Uganda E-mail: [email protected]
S. Kyamanywa
Affiliation:
Department of Crop Science, Faculty of Agriculture, Makerere University, P.O. Box 7062, Kampala, [email protected]
H. R. Willson
Affiliation:
Ohio State University, 1991 Kenny Road, Columbus, OH 43210USA
A. Russell-Smith
Affiliation:
Natural Resources Institute (NRI), The University of Greenwich, Chatham, Kent ME4 4TB, UK
Get access

Abstract

Field experiments were conducted to investigate the attractiveness of fish bones to predatory ants in a maize agroecosystem. The fish bones were applied crushed in shallow furrows together with dry maize stalks, or broadcast on the soil surface at 3 application rates: 0, 40 and 80 kg/ha; subsequent reduction in termite attack on maize plants was then assessed. Burying the fish bone powder caused higher ant nesting (10–78 %) than surface broadcasting (12–39 %). Attractiveness of the fish bones and the predatory efficiency of the ants against termites in maize was also highest with a dose of 80 kg/ha (1.0 kg/plot) causing higher nesting of ants (>90 %) and 54 % lower termite damage to maize plants compared to control plots. Dose responses indicated significant relationships between amount of fish bone powder applied and termite activity and also between termite damage and maize yield. The mechanism by which the ants are able to protect maize against termite damage may be twofold: direct kill as a result of their predatory action and termite avoidance of maize plants with ant nests. Further studies are required to assess the potential benefits of an integrated use of this technique with other non-chemical options for termite control in maize, such as intercropping.

Résumé

Des expérimentations de terrain ont été réalisées afin d'évaluer l'attractivité d'arêtes de poisson sur des fourmis prédatrices dans un agro-écosystème de maïs. Les aretes broyées ont été appliquées enfouies dans le sol avec des debris sees de maïs ou dispersées à la surface du sol à 3 doses: 0, 40 et 80 kg/ha et on a estimé la reduction des attaques de termites sur les plants de maïs suite à ces traitements. L'enfouissement de la poudre d'arêtes a provoqué une plus grande nidification des fourmis (10–78%) que l'épandage à la surface du sol (12–39%). L'attractivité des arêtes etdvd l'efficacité prédatrice des fourmis contre les termites dans les champs de maïs sont également plus importantes à la dose de 80 kg/ha (1,0 kg/parcelle); la nidification des fourmis est plus élevée (> 90%) et les dégàts provoqués par les termites sur le maïs sont réduits de 54%. L'effet dose réponse indique une relation significative entre la quantité de poudre d'arétes appliquée et l'activité des termites ainsi qu'entre les dégàts des termites et la production du maïs. Le mécanisme par lequel les fourmis sont capables de protéger le maïs contre les attaques de termites serait double: une mort directe par leur action prédatrice et le fait que les termites évitent des plants de maïs hébergeant des nids de fourmis.

Des études complémentaires sont nécessaires pour évaluer les bénéfices potentiels de l'intégration de cette technique avec d'autres méthodes non-chimiques pour le contrôle des termites dans les champs de maïs, telle que l'association culturale.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1998) Evaluation of Fipronil 35G for control of termites in maize. Unpublished Report.Google Scholar
Bigger, M. (1966) The biology and control of termites damaging field crops in Tanganyika. Bull. Entomol. Res. 56, 417444.Google Scholar
Cowie, R. H. and Wood, T. G. (1989) Damage to crops, forestry and range-land by fungus-growing termites (Termitidae: Macrotermitinae) in Ethiopia. Sociobiology 15, 139153.Google Scholar
Logan, J. W. M., Cowie, R. H. and Wood, T. G. (1990) Termite (Isoptera) control in agriculture and forestry by nonchemical methods: A review. Bull. Entomol. Res. 80, 309330.CrossRefGoogle Scholar
Ochiel, G. R. S. (1995) Biology and bio-control potential of Cordycepioideus bisporus Stifler and Paecilomyces fiimusoroseus (Wize) Brown and Smith on the higher termite Macrotermes subhyalinus Rambur in Kenya. PhD Dissertation, Royal Veterinary and Agricultural University, Copenhagen, Denmark. 210 pp.Google Scholar
SAS Institute (1990) SAS/STAT User's Guide, Version 6, 4th Edition, Vol. 2. SAS Institute, Cary, NC.Google Scholar
Sekamatte, M. B. (2000) Options for integrated management of termites (Isoptera: Termitidae) in smallholder maize-based cropping systems in Uganda. PhD Thesis, Makerere University. 269 pp.Google Scholar
Sekamatte, M. B., Ogenga-Latigo, M. W. and Russell-Smith, A. (1999) The effect of plant architecture of open-pollinated and hybrid varieties of maize on their attractiveness to ant predators of termites. MUARIK Bulletin 2, 7177.Google Scholar
Sekamatte, M. B., Ogenga-Latigo, M. W. and Russell-Smith, A. (2000) Observations on field parasitism of the subterranean termite Pseudacanthotermes sp. (Termitidae: Macrotermitidae) by Megaselia scaralis (Diptera: Phoridae) in Uganda. MUARIK Bulletin 3, 4348.Google Scholar
Sekamatte, M. B., Ogenga-Latigo, M. W. and Russell-Smith, A. (2001a) The effect of maize stover used as mulch on termite damage to maize and activity of predatory ants. Afr. Crop Sci. J. 9, 411419.CrossRefGoogle Scholar
Sekamatte, M. B., Ogenga-Latigo, M. W. and Russell-Smith, A. (2001b) The potential of proteineous and sugar-based baits in attracting predatory ants and suppressing termite damage in maize. Crop Protection 20, 653662.Google Scholar
Sekamatte, M. B., Ogenga-Latigo, M. W. and Russell-Smith, A. (2002) Estimating yield losses of maize due to termite damage in Uganda. Crop Protection. (In press).Google Scholar
United Nations (1987) Consolidated List of Products Where Consumption and/or Sale Have Been Banned, Withdrawn, Severely Restricted Or Not Approved By Governments. United Nations (United Nations Publ. ST/ESA/192). New York.Google Scholar
Wightman, J. A. (1991) Soil insect problem in African groundnut crops, pp. 171176. In Advances in Management and Conservation of Soil Fauna (Edited by Veeresh, G. K., Rajagopal, D. and Viraktamath, C. A.). Oxford & IBH Publ., New Delhi.Google Scholar
Wood, T. G., Johnson, R. A. and Ohiagu, C. E. (1980) Termite damage and crop loss studies in Nigeria— A review of termite (Isoptera) damage to maize and estimation of damage and loss in yield and termites (Microtermes) abundance at Mokwa. Trop. Pest Manage. 26, 241253.Google Scholar