Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T04:46:58.361Z Has data issue: false hasContentIssue false

Immune Response of Insects to Abiotic Agents: A Review of Current Prospectives

Published online by Cambridge University Press:  19 September 2011

El-Sayed H. Shaurub
Affiliation:
Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
Get access

Abstract

—The possible immune responses of insects to some abiotic agents were reviewed. These agents include insecticides, insect growth regulators, antibiotics, inert particles and miscellaneous substances of particulate and non-particulate nature. The significance of studying the immune response of insects to abiotic agents in relation to insect control, together with the link between the immune response of insects to both abiotic and biotic agents is discussed.

Résumé

Les possibles réponses immunitaires des insectes aux agents biotiques sont passées en revue. Ces agents comprennent les insecticides, les régulateurs de croissance des insectes, les antibiotiques, les particules inertes et des substances de diverses natures. L'intérêt d'étudier la réponse immunitaire des insectes aux agents abiotiques dans une perspective de lutte ainsi que le lien entre la réponse immunitaire des insectes aux agents biotiques et abiotiques est discuté.

Type
Review Article
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashida, M. (1981) A cane sugar factor suppressing activation of prophenoloxidase in haemolymph of the silkworm, Bombyx mori. Insect Biochem. 11, 5765.CrossRefGoogle Scholar
Barigozzi, C. (1958) Melanotic tumors in Drosophila. J. Cell Comp. Physiol. 52, 371381.CrossRefGoogle ScholarPubMed
Barigozzi, C. (1969) Genetic control of melanotic tumors in Drosophila. Natl. Cancer Instit. Mongr. 31, 277290.Google ScholarPubMed
Boman, H. G. and Hultmark, D. (1987) Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103126.CrossRefGoogle ScholarPubMed
Boman, H. G. and Steiner, H. (1981) Humoral immunity in cecropia pupae, pp. 7591. In Current Topics in Microbiology and Immunology, 94/95 (Edited by Henle, W. et al.). Springer-Verlag, Berlin-New York.Google Scholar
Boman, H. G., Faye, I. N. and Rasmuson, T. (1974) Why insect immunity?, pp. 103114. In Energy, Biosynthesis and Regulation in Molecular Biology (Edited by Richter, D.). Walter de Gruyter, Berlin.Google Scholar
Boman, H. G., Faye, I., Hofsten, P. V., Kockum, K., Lee, J. Y., Xanthopoulos, K. C., Bennich, H., Engstrom, A., Merrifield, B. R. and Andrech, D. (1986) Antibacterial immune proteins in insects. A review of current prospectives, pp. 6373. In Immunity in Invertebrates (Edited by Brehélin, M.). Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
Brehélin, M. and Hoffmann, J. A. (1980) Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: Study of ultrastructure and clearance. J. Insect Physiol. 26, 103111.CrossRefGoogle Scholar
Brehélin, M., Hoffmann, J. A., Matz, G. and Porte, A. (1975) Encapsulation of implanted foreign bodies by haemocytes of Locusta migratoria and Melolontha melolontha. Cell Tissue Res. 160, 283289.CrossRefGoogle Scholar
Brewer, F. D. and Vinson, S. B. (1971) Chemicals affecting the encapsulation of foreign material in an insect. J. Invertebr. Pathol. 18, 287289.CrossRefGoogle ScholarPubMed
Brey, P. T. (1994) The impact of stress on insect immunity. Bull. Instit. Pasteur (Paris) 92, 101118.Google Scholar
Bryant, P. J. and Sang, J. H. (1969) Physiological genetics of melanotic tumors in Drosophila melanogaster. VI. The tumorgenic effects of juvenile hormone-like substances. Genetics 62, 321336.CrossRefGoogle Scholar
Chang, B. S., Yoe, S. M., Kim, W. K. and Moon, M. J. (1991) Electron microscope study on the haemocyte immune response to foreign substances in insects. II—Encapsulation. Kor. J. Entomol. 21, 119131.Google Scholar
Christensen, B. M., Forton, K. F. and Leonard, M. M. (1987) Surface changes on Brugia pahangi microfilariae and their association with immune evasion in Aëdes aegypti. J. Invertebr. Pathol. 49, 1418.CrossRefGoogle ScholarPubMed
Cox-Foster, D. L. and Stehr, J. E. (1994) Induction and localization of FAD-glucose dehydrogenase (GLD) during encapsulation of abiotic implants in Manduca sexta larvae. J. Insect Physiol. 40, 235249.CrossRefGoogle Scholar
El-Moataz Bellah, M. M. and Shaurub, E. H. (2000) Humoral immune response of the cotton leafworm, Spodoptera littoralis to the oral administration of pyriproxyfen and triflumuron. J. Egypt. Germ. Soc. Zool. 31, 209225.Google Scholar
El-Shaikh, T. A. A. (1997) Combined effects of certain insecticides and insect growth regulators on some stored grain beetles. MSc thesis, Ain Shams University, Egypt.Google Scholar
Faye, I., Pye, A., Rasmuson, I., Boman, H. G. and Boman, I. A. (1975) Insect immunity. II—Simultaneous induction of antibacterial activity and selective synthesis in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immunol. 12, 14261438.Google Scholar
Flyg, C., Dalhammar, G., Rasmuson, B. and Boman, H. G. (1987) Insect immunity: Inducible antibacterial activity in Drosophila. Insect Biochem. 17, 153160.CrossRefGoogle Scholar
Francois, J. (1975) L'Encapsulation haémocytarie expérimentale chez le lépisme Thermobia domestica. J. Insect Physiol. 21, 15351546.Google Scholar
Gorman, M. J., Cornel, A. J., Collins, F. H. and Paskewitz, S. M. (1996) A shared genetic mechanism for melanotic encapsulation of CM-sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae. Exp. Parasitol. 84, 380386.CrossRefGoogle Scholar
Gorman, M. J., Saverson, D. W., Cornel, A. J., Collins, F. H. and Paskewitz, S. M. (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146, 965971.CrossRefGoogle ScholarPubMed
Götz, P. (1986) Encapsulation in arthropods, pp. 153170. In Immunity in Invertebrates (Edited by Brehélin, M.). Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
Götz, P. and Boman, H. G. (1985) Insect immunity, pp. 453485. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford and New York.Google Scholar
Grimstone, A. V., Rotheram, S. and Salt, G. (1967) An electron-microscope study of capsule formation by insect blood cells. J. Cell Sci. 2, 201292.Google Scholar
Gupta, A. P. (1985) Cellular elements in the hemolymph, pp. 401451. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, New York.Google Scholar
Hammerberg, B., Rikihisa, Y. and King, M. W. (1984) Immunoglobulin interactions with surfaces of sheathed and exosheathed microfilaria. Parasitology 85, 421434.Google Scholar
Hassan, T., El-Deeb, S., Saad, A. and El-Moursy, A. (1995) Phagocytic activity of haemocytes for the Egyptian cotton leafworm, Spodoptera littoralis (Boisd). J. Egypt. Germ. Soc. Zool. 18, 3757.Google Scholar
Hegazi, E. M., Khafagi, W. E. and El-Aziz, G. M. A. (1998) Effect of lefenuron, a chitin synthesis inhibitor, on encapsulation response of Spodoptera littoralis larvae to surplus Microplitis rufiventris larvae. Insect Sci. Applic. 18, 357363.Google Scholar
Hillen, N. D. (1977) Experimental studies on the reactions of insect haemocytes to artificial implants of wound healing in insects. PhD thesis, London University, London.Google Scholar
Hoffmann, J. A. (1970) Endocrine regulation of the production and differentiation of haemocytes in an orthopteran insect, Locusta migratoria. Gen. Comp. Endocr. 15, 198219.Google Scholar
Hoist, H. and Schlüter, U. (1984) Effects of the antibiotic chartreusin on Epilachna varivestis Muls. (Coleoptera, Coccinellidae). Abst. XVII. Int. Congr. Entomol., Hamburg, R 16. 2.4.Google Scholar
Jarosz, J. (1988) The use of saline W, a physiological salt solution for experimentation on insect immunity. Cytobios 53, 1929.Google Scholar
Jarosz, J. (1994) Modulation of cell-free immune responses in insects. Cytobios 79, 169180.Google Scholar
Jarosz, J. and Glinski, Z. (1999) Relationship of pesticides to insect cell-free immune response. Ann. Univ. Mariae Curie Sklodo. Sect. DD, Med. Veter. 54, 195201.Google Scholar
Jones, J. C. (1967) Effects of repeated haemolymph withdrawals and of ligaturing the head on differential haemocyte counts of Rhodnius prolixus Stål. J. Insect Physiol. 13, 13511360.Google Scholar
Kaaya, G. P. (1989) Assessment of antibiotic potentials of insect antibacterial factors. Insect Sci. Applic. 10, 341346.Google Scholar
Kaaya, G. P. (1993) Inducible, humoral antibacterial immunity in insects, pp. 6989. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.Google Scholar
Kaaya, G. P., Flyg, C. and Boman, H. G. (1987) Insect immunity: Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans morsitans. Insect Biochem 17, 309315.Google Scholar
Lackie, A. M. (1976) Evasion of the haemocytic defense reaction of insects by larvae of Hymenolepis diminuta (Cestoda). Parasitology 75, 91104.Google Scholar
Lackie, A. M. (1983) Effect of substratum wettability and charge on adhesion in vitro and encapsulation in vivo by insect haemocytes. J. Cell Sci. 63, 181190.Google Scholar
Locke, M. (1991) Insect epidermal cells, pp. 120. In Physiology of the Insect Epidermis (Edited by Binnington, K. and Retnakara, A.). CSIRO Publications, East Melbourne, Australia.Google Scholar
Lynn, D. C. and Vinson, S. B. (1977) Effects of temperature, host age, and hormones upon the encapsulation of Cardiochiles nigriceps eggs by Heliothis sp. J. Invertebr. Pathol. 29, 5055.Google Scholar
Madhaven, K. (1972) Induction of melanotic pseudotumors in Drosophila melanogaster by juvenile hormone. Wilhelm Rowx Archiv. 169, 345349.Google Scholar
Matz, G. (1965) Implantation de fragments de cellophané chez Locusta migratoria L. Bull. Soc. Zool. Fr. 90, 429433.Google Scholar
Mohammed, T. R. A. (1998) Biochemical and physiological studies of some insect growth regulators on the cotton leafworm, Spodoptera littoralis (Boisd.) PhD thesis, Cairo University, Egypt.Google Scholar
Nappi, A. J. (1974) Insect haemocytes and the problem of host recognition, pp. 201224. In Contemporary Topics in Immunology Vol. IV (Edited by Cooper, E. L.). Plenum Press, New York and London.Google Scholar
Nappi, A. J. and Sugumaran, M. (1993) Some biochemical aspects of eumelanin formation in insect immunity, pp. 131148. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
Paskewitz, S. and Riehle, M. (1994) Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated sephadex beads. Dev. Comp. Immunol. 18, 369375.Google Scholar
Pathak, J. P. N. (1993a) Cell-mediated defence reactions in insects, pp. 4758. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
Pathak, J. P. N. (1993b) Haemagglutinins (lectins) in insects, pp. 149169. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.Google Scholar
Pathak, J. P. N. (1993c) Insect Immunity. Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta. 192 pp.CrossRefGoogle Scholar
Pilat, M. (1935) The effect of intestinal poisoning on the blood of locusts (Locusta migratoria). Bull. Entomol. Res. 26, 283292.Google Scholar
Pryce, M. J., Astone, W. P. and Chadwick, J. S. (1990) Cane sugar factor as an inducing agent of immunity in Galleria mellonella. Dev. Comp. Immunol. 14, 369378.Google Scholar
Rao, C. G. P., Ray, A. and Ramamurthy, P. S. (1984) Effect of ligation and ecdysone on total heamocyte count in the tobacco caterpillar, Spodoptera littoralis (Noctuidae, Lepidoptera). Can. J. Zool. 62, 14611463.Google Scholar
Ratcliffe, N. A. and Rowley, A. F. (1979) Role of haemocytes in defense against biological agents, pp. 331414. In Development, Forms, Functions and Techniques (Edited by Gupta, A. P.). Cambridge University, Cambridge.Google Scholar
Reik, L. (1968) Contacts between insect blood cells, with special reference to the structure of the capsule formed about parasites. MSc thesis, Cambridge University, Cambridge.Google Scholar
Salt, G. (1956) Experimental studies in insect parasitism. IX—The reactions of a stock insect to an alien parasite. Proc. Roy. Soc. London (B) 149, 93108.Google Scholar
Salt, G. (1970) The Cellular Defence Reactions of Insects. Cambridge Monograph in Experimental Biology No. 16. Cambridge University Press, Cambridge.Google Scholar
Sato, S., Akai, H. and Sawada, H. (1976) An ultrastructural study of capsule formation by Bombyx mori. Zool. fap. 49, 177188.Google Scholar
Schmidt, A. R. (1979) Studies on encapsulation in insects. PhD thesis, Wales University.Google Scholar
Schmidt, A. R. and Ratcliffe, N. A. (1978) The encapsulation of araldite implants: Recognition of foreignness in Clitumnus extradentatus. J. Insect Physiol. 24, 511521.Google Scholar
Siva-Jothy, M. T., Yoshitaka, T., Hooper, R. E. and Plaistow, S. J. (2001) Investment in immune function under chronic and acute immune challenge in an insect. Physiol. Entomol. 26, 15.CrossRefGoogle Scholar
Sodërall, K. and Aspàn, A. (1993) Prophenoloxidase activating system and its role in cellular communication, pp. 113129. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.Google Scholar
Tackle, G. B. and Lackie, A. M. (1985) Chemokinetic behaviour of insect haemocytes in vitro. J. Cell Sci. 85, 8594.Google Scholar
Vinson, S. B. (1990) Immunosuppression Is New Direction in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss Inc., USA. pp. 517535.Google Scholar
Vinson, S. B. (1993) Interactions between the insect endocrine system and the immune system, pp. 103112. In Insect Immunity (Edited by Pathak, J. P. N.). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
Wago, H. (1983) The important significance of filopodial elongation of phagocytic granular cells of the silkworm, Bombyx mori in recognition of foreignness. Dev. Comp. Immunol. 7, 445453.Google Scholar
Wiesner, A. (1991) Induction of immunity by latex beads and by hemolymph transfer in Galleria mellonella. Dev. Comp. Immunol. 15, 241250.CrossRefGoogle ScholarPubMed
Wiesner, A. (1993) Further observations on the induction of immunity by hemolymph transfer in Galleria mellonella. Dev. Comp. Immunol. 17, 291300.Google Scholar
Wiesner, A. and Götz, P. (1993) Silica beads induce cellular and humoral immune responses in Galleria mellonella larvae and in isolated plasmatocytes, obtained by a newly adapted nylon wool separation method. J. Insect Physiol. 39, 865876.CrossRefGoogle Scholar
Yeager, J. F. and Munson, S. C. (1942) Changes induced in the blood cells of the southern armyworm, Prodenia eridania by the administration of poisons. J. Agric. Res. LXIV, 307322.Google Scholar
Zachary, D. and Hoffmann, D. (1984) Lysozyme is stored in the granules of certain haemocyte types in Locusta. J. Insect Physiol. 30, 405411.Google Scholar
Zachary, D., Brehélin, M. and Hoffmann, J. A. (1975) Role of the thrombocytoids in capsule formation in the dipteran Calliphora erythrocephala. Cell Tissue Res. 162, 142348.CrossRefGoogle ScholarPubMed
Zahedi, M., Denham, D. A. and Ham, P. J. (1992) Encapsulation and melanization of Armigeres subalbatus against inoculated sephadex beads. J. Invertebr. Pathol. 59, 258263.CrossRefGoogle Scholar