Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:18:21.589Z Has data issue: false hasContentIssue false

Positron Emission Tomography: A Technology Assessment

Published online by Cambridge University Press:  10 March 2009

Nora D. Volkow
Affiliation:
University of Texas Health Science Center at Houston
Laurence R. Tancredi
Affiliation:
University of Texas Health Science Center at Houston

Extract

Positron emission tomography (PET) is a new nuclear medicine technique that has recently entered the clinical realm of medicine. Although it is a technique that can be utilized for assessment of biochemical and physiological parameters of any organ in the body, it has particular utility in the investigation of the brain. PET poses unique advantages over previous imaging devices. For the first time, it is feasible to investigate directly various biological parameters of the brain in a noninvasive way. PET allows for investigating the functional, biochemical, physiological, and pharmacological characteristics of various areas within the brains of normal and psychiatric or neurological patients. Although it has already started to give promising results, it is too new a technique to obtain an accurate appraisal of its true potentials. This is a problem that seems always to surface when one tries to evaluate the utility of a new technique in a new area of research. The problem is accentuated in the case of PET where there is no other technique available with which to compare results. This paper will discuss the basic principles of PET, its relationship to other existing imaging devices, and the issues to be considered when making a technological assessment of positron emission tomography.

Type
General Essays
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adelstein, S. J. Pitfalls and biases in evaluating diagnostic technologies. In McNeil, B. J. & Cravalho, E. C. (eds.), Critical issues in medical technology. Boston: Auburn House, 1982, 6769.Google Scholar
2.Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Schwartz, J. M., Gerner, R. H., Selin, C. E., & Sumida, R. N.Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry, 1985, 42, 441–47.Google Scholar
3.Benson, D. F., Kuhl, D. E., & Hawkins, R. A.The fluorodeoxyglucose, 18F scan in Alzheimer;apos;s disease and multi-infarct dementia. Archives of Neurology, 1983, 40, 711–14.Google Scholar
4.Bigler, R. E., & Sgouros, G.Biological analysis and dosimetry for 15O labeled O2, CO2 and CO cases administered continuously by inhalation. Journal of Nuclear Medicine, 1983, 24, 431–37.Google Scholar
5.Bradley, W. G., Waluch, V., Yadley, R. A., & Wycroft, R. R.Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology, 1984, 152, 695702.CrossRefGoogle Scholar
6.Brodie, J. D., Gomez-Mont, F., & Volkow, N. D. Analysis of positron emission trans-axial tomography images in psychiatric disorders. In Greitz, T., Ingvar, D., & Widen, L. (eds.), Positron emission tomography, New York: Raven Press, 1985, 441–52.Google Scholar
7.Brodie, J. P., Volkow, N., & Rotrosen, J. Principles and application of positron emission tomography in neuroscience. In Lajtha, A. (ed.), Handbook of neurochemistry. New York: Plenum, 1983, 3, 331–47.Google Scholar
8.Brodie, J. D., Wolf, S. P., Volkow, N. D., Christman, D. R., Farkas, T., Ferris, S., Fowler, J. S., Russell, J. A., & Yonekura, Y. Evaluation of regional glucose metabolism with positron emission tomography in normal and psychiatric populations. In Heiss, W. D. & Phelps, M. E. (eds.), Positron emission tomography of the brain. Berlin: Springer, 1983, 201–06.CrossRefGoogle Scholar
9.Budinger, T. F., Huesman, R. H., Knittel, B., Friedland, R. P., & Derenzo, S. E. Physiological modeling of dynamic measurements of metabolism using positron emission tomography. In Greitz, T., Ingvar, D., & Widen, L. (eds.), Positron emission tomography. New York: Raven Press, 1985, 165–83.Google Scholar
10.Cone, J. B.Positron emission tomography: new analytic tool for vascular disease. Vascular Surgery, 1985, 2, 360–66.CrossRefGoogle ScholarPubMed
11.Creasey, H., & Rapoport, S.The aging human brain. Annals of Neurology, 1985, 17, 210.CrossRefGoogle ScholarPubMed
12.Devous, M., Bonte, F. J., & Stokely, E. M. Imaging brain function: techniques and systems. 138th Annual Meeting of the American Psychiatry Association, Dallas, Texas, 1985.Google Scholar
13.Duffy, F. H., Burchfield, J. L., & Lombroso, C. T.Brain electrical activity mapping (BEAM). Annals of Neurology, 1979, 5, 309–32.CrossRefGoogle ScholarPubMed
14.Edlund, M., & Tancredi, L.Quality of life: an ideological critique. Perspectives in Biology and Medicine, 1985, 28, 591607.Google Scholar
15.Evans, R. W. et al. Final report: the national heart transplantation study. Seattle: Battelle Human Affairs Research Centers, 1984.Google Scholar
16.Evens, R. G., Siegal, B. A., & Welch, M. J.Cost analysis of positron emission tomography for clinical use. American Journal of Roentgenology, 1983, 141, 1073–76.CrossRefGoogle ScholarPubMed
17.Ferris, S. H., de Leon, M. J., Wolf, A., George, A., Risberg, B., Brodie, J., Gentes, C., Christman, D. R., & Fowler, J. S. Regional metabolism and cognitive deficits in aging and senile dementia. In Samuel, D. (ed.),Aging of the brain. New York: Raven Press, 1983, 133–42.Google Scholar
18.Fox, J. L.PET controversy aired. Science, 1984, 224, 143–44.CrossRefGoogle ScholarPubMed
19.Frackowiak, R. S., Lenzi, G. L., Jones, T., & Heather, J. D.Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. Journal of Computer Assisted Tomography, 1980, 4, 717–26.CrossRefGoogle ScholarPubMed
20.Friedland, R. P., Budinger, T. F., Ganz, E., Yano, Y., Mathis, C. A., Koss, B., Ober, B. A., Huesman, R. H., & Derento, S. E.Regional cerebral metabolic alterations in dementia of the Alzheimer's type: positron emission tomography with 18F fluoro-deoxyglucose. Journal of Computer Assisted Tomography, 1983, 7, 590–98.CrossRefGoogle Scholar
21.Gallhofer, B., Trimble, M. R., Frackowiak, R., Gibbs, J., & Jones, T.A study of cerebral blood flow and metabolism in epileptic psychosis using positron emission tomography and oxygen. Journal of Neurology, Neurosurgery and Psychiatry, 1985, 48, 201–06.CrossRefGoogle ScholarPubMed
22.Health Care Financing Administration (HICFA). Medicare Coverage Issues Manual SX 50.13. Washington, DC: U. S. Government Printing Office, 1985.Google Scholar
23.Itil, M. T.The use of electroencephalography in the practice of psychiatry. Psychosomatic, 1982, 23, 799813.CrossRefGoogle ScholarPubMed
24.John, R. E.Neurometrics: clinical applications of quantitative electrophysiology. New York: Wiley, 1977.Google Scholar
25.Jones, S. C., Alavi, A., Christman, D., Montanez, I., Wolf, A., & Reivich, M.The radiation dosimetry of 2-(F-18)-Deoxy-D-Glucose in man. Journal of Nuclear Medicine, 1982, 23, 613–17.Google Scholar
26.Kessler, R. M., Ellis, J. R., & Eden, M. Analyses of emission tomographic scan data: limitations imposed by resolution and background. Journal of Computer Assisted Tomography, in press.Google Scholar
27.Kuhl, D. E., Metter, E. J., Riege, W. H., & Markham, C. H.Patterns of cerebral glucose utilization in Parkinson's disease and Huntington's disease. Annals of Neurology, 1984 Supplement, 15, S119S125.Google Scholar
28.Leenders, K. L., Gibbs, J. M., Frackowiak, R. S., Lammertsma, A., & Jones, T.Positron emission tomography of the brain: new possibilities for the investigation of human cerebral pathophysiology. Progress in Neurobiology, 1984, 23, 138.Google Scholar
29.Leenders, K., Wolfson, L., Gibbs, J., Wise, R., Jones, T., & Legg, N.Regional cerebral blood flow and oxygen metabolism in Parkinson's disease and their response to L-Dopa. Journal of Cerebral Blood Flow and Metabolism, 1983 Supplement, 3, S488S489.Google Scholar
30.Lenzi, G. L., Frackowiak, R. S., & Jones, T.Cerebral oxygen metabolism and blood flow in human cerebral ischaemic infarction. Journal of Cerebral Blood Flow and Metabolism, 1982, 2, 321–35.CrossRefGoogle Scholar
31.Lishof, J. C., Behiney, C., Banta, D., & Bryan, L. The role of cost-benefit and cost-effectiveness analysis in controlling health care costs. In McNeil, B. J. & Cravalho, E. C. (eds.), Critical issues in medical technology. AuburnBoston: Auburn House, 1982, 85.Google Scholar
32.Luft, H. S., Bunker, J. P., & Enthoven, A. L.Should operations be randomized? New England Journal of Medicine, 1979, 301, 1364–69.Google Scholar
33.Mazziotta, J. C., & Engle, J.The use and impact of positron computed tomography scanning in epilepsy. Epilepsia, 1984 Supplement, 25, S86S104.CrossRefGoogle ScholarPubMed
34.Morrhisa, J., Duffy, F., & Wyatt, R.Brain electrical activity mapping (BEAM) in schizophrenic patients. Archives of General Psychiatry, 1983, 40, 719–28.Google Scholar
35.Norman, D., & Brant-Zawadzki, M. Magnetic resonance imaging of the central nervous system. In Sokoloff, L. (ed.), Brain imaging and brain function. New York: Raven Press, 1985, 259–69.Google Scholar
36.Office of Technology Assessment (OTA), Congress of the United States. Assessing the efficacy and safety of medical technologies. Washington, DC: U.S. Government Printing Office, 1978.Google Scholar
37.Olendorf, W. H. Principles of imaging structure by NMR. In Sokoloff, L. (ed.), Brain imaging and brain function. New York: Raven Press, 1985, 245–57.Google Scholar
38.Patronas, N. J., Di, Chiro G., Kufta, C., Bakamian, D., Kornblith, P. L., Simon, R., & Larson, S. M.Prediction of survival of glioma patients by means of positron emission tomography. Journal of Neurosurgery, 1985, 62, 816–22.CrossRefGoogle ScholarPubMed
39.Patronas, N. J., Di, Chiro G., Smith, B. H., de la Paz, R. L., Brook, R. A., Milam, H., & Kornblith, P. L.Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Research, 1984, 291, 93101.CrossRefGoogle ScholarPubMed
40.Phelps, M. E., & Mazziotta, J. C.Positron emission tomography: human brain function and biochemistry. Science, 1985, 228, 799809.CrossRefGoogle ScholarPubMed
41.Phelps, M. E., & Mazziotta, J. C. Human sensory stimulation and deprivation as demonstrated by positron computed tomography. In Heiss, W. D. & Phelps, M. E. (eds.), Positron emission tomography of the brain. Berlin: Springer, 1983, 139–52.CrossRefGoogle Scholar
42.Phelps, M., Mazziotta, J. C., Shelbert, H. R., Hawkins, R. A., & Engel, J.Clinical PET: what are the issues? Journal of Nuclear Medicine, 1985, 26, 1353–58.Google Scholar
43.Powers, W. J., & Raichle, M. E.Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke, 1985, 16, 361–67.Google Scholar
44.Pykett, I.NMR imaging in medicine. Scientific American, 1982, 242, 7888.Google Scholar
45.Raichle, M. E., Martin, W. R. W., Herscovitch, P., Mintun, M. A., & Markham, J.Brain blood flow measured with intravenous H215O II implementation and validation. Journal of Nuclear Medicine, 1983, 24, 790–98.Google Scholar
46.Reivich, M., Alavi, A., Wolf, A., Fowler, J., Russell, J., Arnett, C., MacGregor, R., Shyse, C., Atkins, H., Anand, A., Dann, R., & Greenberg, J.Glucose metabolic rate kinetic model parameter determination in man: the lumped contants and rate constants for 18F-Fluorodeoxyglucose and 11C-Deoxyglucose. Journal of Cerebral Blood Flow and Metabolism, 1986, 5, 179–92.CrossRefGoogle Scholar
47.Reivich, M., & Gur, R. Cerebral metabolic effects of sensory and cognitive stimuli in normal subjects. In Reivich, M. & Alavi, A. (eds.), Positron emission tomography. New York: Alan R. Liss, 1985, 329–44.Google Scholar
48.Rosenberg, L. E., & Scrivner, C. R. Disorders of amino acid metabolism. In Bondy, P. K. & Rosenberg, L. E. (eds.), Control and disease, 8th ed., Philadelphia: Saunders, 1980, 716.Google Scholar
49.Shagass, C., Roemer, R., & Straumanis, J.Relationship between psychiatric diagnosis and some quantitative EEG variables. Archives of General Psychiatry, 1982, 39, 1423–35.CrossRefGoogle ScholarPubMed
50.Sokoloff, L. Application of quantitative autoradiography to the measurement of biochemical processes in vivo. In Reivich, M. & Alavi, A. (eds.), Positron emission tomography. New York: Alan R. Liss, 1985, 142.Google Scholar
51.Steinberg, E. P., Sisk, J. E., & Locke, K. E.X-ray, CT and magnetic resonance imagers: diffusion patterns and policy issues. New England Journal of Medicine, 1985, 313, 859–64.Google Scholar
52.Tancredi, L. Social and ethical implications in technology assessment. In McNeil, B. J. & Cravalho, E. C. (eds.), Critical issues in medical technology. Boston: Auburn House, 1982, 93112.Google Scholar
53.Tancredi, L. Informed consent: the dilemma. In: Roberts, E. B. et al. , (eds.), Biomedicai innovations. Cambridge, MA: M.I.T. Press, 1981, 301–23.Google Scholar
54.Tancredi, L., & Barsky, A.Technology and health care decision-making: conceptualizing the process of societal informed consent. Medical Care, 1974, 12, 845–59.CrossRefGoogle ScholarPubMed
55.Ter, Pogossian M. M.PET, SPECT, and NMRI: competing or complementary disciplines? Journal of Nuclear Medicine, 1985, 26, 1487–98.Google Scholar
56.Thomas, D. G. T., Beaney, R. P., & Brooks, D. J.Positron emission tomography in the study of cerebral tumours. Neurosurgical Review, 1984, 7, 253–58.Google Scholar
57.Volkow, N. D., Brodie, J. D., & Gomez-Mont, F. Applications of PET to psychiatry. In Reivich, M. & Alavi, A. (eds.), Positron emission tomography. New York: Alan R. Liss, 1985, 311–27.Google Scholar
58.Volkow, N. D., Brodie, J. D., Wolf, A., Gomez-Mont, F., Van Gelder, P., Russell, J., & Overall, J.Differences in patterns of brain metabolism between normals and schizophrenics. Journal of Cerebral Blood Flow and Metabolism, 1985 Supplement, 5, S199S200.Google Scholar
59.Volkow, N. D., Goldman, S., Flamm, E. S., Cravioto, H., Wolf, A., & Brodie, J.Labeled Potrescine as a probe in brain tumors. Science, 1983, 221, 673–75.CrossRefGoogle ScholarPubMed
60.Volkow, N. D., Van Gelder, P., Brodie, J., Wolf, A., Cancro, R., Gomez-Mont, F., & Overall, J. Phenomenological correlates of glucose metabolism in chronic schizophrenics. American Journal of Psychiatry, in press.Google Scholar
61.Wagner, H. N. et al. Imaging dopamine receptors in the human brain by positron tomography. Science, 1983, 221, 1264–66.Google Scholar
62.Walters, L.Technology assessment and genetics. Theological Studies, 1972, 33, 666–87.CrossRefGoogle Scholar
63.Wise, R. J., Bernardi, S., Frackowiak, R., Legg, N., & Jones, T.Serial observations on the pathophysiology of acute stroke: the transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain, 1983, 106, 197222.CrossRefGoogle ScholarPubMed
64.Wolf, A.Special characteristics and potential for radiopharmaceuticals for positron emission tomography. Seminars in Nuclear Medicine, 1981, 11, 212.CrossRefGoogle ScholarPubMed