Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:59:36.159Z Has data issue: false hasContentIssue false

USING FULL PROBABILITY MODELS TO COMPUTE PROBABILITIES OF ACTUAL INTEREST TO DECISION MAKERS

Published online by Cambridge University Press:  25 May 2001

Frank E. Harrell
Affiliation:
University of Virginia School of Medicine
Ya-Chen Tina Shih
Affiliation:
MEDTAP International Inc.

Abstract

The objective of this paper is to illustrate the advantages of the Bayesian approach in quantifying, presenting, and reporting scientific evidence and in assisting decision making. Three basic components in the Bayesian framework are the prior distribution, likelihood function, and posterior distribution. The prior distribution describes analysts' belief a priori; the likelihood function captures how data modify the prior knowledge; and the posterior distribution synthesizes both prior and likelihood information. The Bayesian approach treats the parameters of interest as random variables, uses the entire posterior distribution to quantify the evidence, and reports evidence in a “probabilistic” manner. Two clinical examples are used to demonstrate the value of the Bayesian approach to decision makers. Using either an uninformative or a skeptical prior distribution, these examples show that the Bayesian methods allow calculations of probabilities that are usually of more interest to decision makers, e.g., the probability that treatment A is similar to treatment B, the probability that treatment A is at least 5% better than treatment B, and the probability that treatment A is not within the “similarity region” of treatment B, etc. In addition, the Bayesian approach can deal with multiple endpoints more easily than the classic approach. For example, if decision makers wish to examine mortality and cost jointly, the Bayesian method can report the probability that a treatment achieves at least 2% mortality reduction and less than $20,000 increase in costs. In conclusion, probabilities computed from the Bayesian approach provide more relevant information to decision makers and are easier to interpret.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)