Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T04:33:41.329Z Has data issue: false hasContentIssue false

Is High-Flux Dialysis Cost-Effective?

Published online by Cambridge University Press:  10 March 2009

John C. Hornberger
Affiliation:
Stanford University
Alan M. Garber
Affiliation:
Stanford University
Michael E. Chernew
Affiliation:
Stanford University

Abstract

High-flux dialysis is a new method for providing routine-maintenance hemodialysis to patients with endstage renal disease. It promises to shorten the duration of the dialysis session, but poses potential clinical risks to patients and financial risks to dialysis centers because of the high unit cost of purchasing new dialysis equipment. We retrospectively evaluated the cost-effectiveness of high-flux dialysis compared to conventional dialysis in a hospital-based center. The center provided only conventional dialysis until March 1989, when it initiated high-flux dialysis. The estimated annual costs of treatment were US $31,249 (high-flux) and $32,562 (conventional). The rate of hospital admissions was almost identical in both groups (conventional, 1.29 admissions per year; high-flux, 1.24 admissions per year; p = 0.23). Predicted prolongation of life expectancy with high-flux dialysis was significantly higher after statistical adjustment for observable patient characteristics (1.8 to 4.5 years; p <0.01). The cost-effectiveness ratio was $28,188 per life-year saved for high-flux compared to conventional dialysis. These findings suggest that the added capital expense of purchasing high-flux equipment can be justified from the perspective of its societal cost-effectiveness.

Type
General Essays
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Acchiardo, S. R., Kraus, A. P., & Jennings, B. R.Beta2-microglobulin levels in patients with renal insufficiency. American Journal of Kidney Diseases, 1989, 13, 7074.CrossRefGoogle Scholar
2.Acchiardo, S. R., Moore, L. W., & Burk, L.Does short dialysis affect morbidity and mortality? (Abstract) Kidney International, 1989, 37, 286.Google Scholar
3.Acchiardo, S. R., Moore, L. W., & Burk, L.High flux hemodialysis. One year experience. (Abstract) Artificial Organs, 1987, 11, 301.Google Scholar
4.Alter, M. J., Favero, M. S., Moyer, L. A., & Bland, L. A.National surveillance of dialysis-associated diseases in the United States. ASAIO Transactions, 1991, 37, 97109.Google ScholarPubMed
5.Amemiya, T., Advanced econometrics. Cambridge, MA: Harvard University Press, 1985.Google Scholar
6.Bardin, T., Kuntz, D., Zingraff, J., et al. Synovial amyloidosis in patients undergoing longterm hemodialysis. Arthritis and Rheumatism, 1985, 28, 1052–58.CrossRefGoogle Scholar
7.Baurmeister, U., Travers, M., Vienken, et al. , Dialysate contamination and back filtration may limit the use of high-flux dialysis membranes. ASAIO Transactions, 1989, 35, 519–22.CrossRefGoogle ScholarPubMed
8.Beck, J. R., & Pauker, S. G.The Markov process in medical prognosis. Medical Decision Making, 1983, 3, 419–58.CrossRefGoogle ScholarPubMed
9.Bland, L. A., Arduino, M. J., Aguero, S. M., & Favero, M. S.Recovery of bacteria from reprocessed high-flux dialyzers after bacterial contamination of header spaces and O-rings. ASAIO Transactions, 1989, 35, 314–16.CrossRefGoogle ScholarPubMed
10.Bommer, J., Becker, K. P., Urbaschek, R., et al. No evidence for endotoxin transfer across high-flux polysulfone membranes. Clinical Nephrology, 1987, 27, 278–82.Google ScholarPubMed
11.Casey, T. T., Stone, W. G., DiRaimondo, C. R., et al. Tumoral amyloidosis of bone of beta2- microglobulin origin in association with long-term hemodialysis: A new type of amyloid disease. Human Pathology, 1986, 17, 731–38.CrossRefGoogle Scholar
12.Chanard, J., Toupance, O., Lavaud, S., et al. Serum beta2-microglobin and extracellular fluid volume during haemodialysis. Nephrology, Dialysis, Transplantation, 1989, 4, 549–54.Google Scholar
13.Collins, A., Ilstrup, K., Hanson, G., et al. Rapid high-efficiency hemodialysis. Artificial Organs, 1986, 10, 185–88.CrossRefGoogle ScholarPubMed
14.Collins, A. J.Clinical aspects of high-efficiency dialysis. ASAIO Transactions, 1988, 34, 56–8.Google Scholar
15.de Francisco, A., Gordillo, J., Cotorruelo, J. G., et al. Influence of dialysis membranes on the convective transport of middle molecules. International Journal of Artificial Organs, 1986, 9, 421–26.CrossRefGoogle ScholarPubMed
16.di Raimondo, C. R., & Pollak, V. E.Beta2-microglobulin kinetics in maintenance hemodialysis: A comparison of conventional and high-flux dialyzers and the effects of dialyzer reuse. American Journal of Kidney Diseases, 1989, 13, 390–95.CrossRefGoogle Scholar
17.Feldstein, P. J.Health care economics. New York: John Wiley & Sons, 1988.Google Scholar
18.Floege, J., Granolleraus, C., Deschodt, G., et al. High-flux synthetic versus cellulosic membranes for beta2-microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration. Nephrology, Dialysis, Transplantation, 1989, 4, 653–57.Google Scholar
19.Gejyo, F., Homma, N., Suzuki, Y., & Arakawa, M.Serum levels of beta2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. (Letter). New England Journal of Medicine, 1986, 314, 585–86.Google Scholar
20.Goldman, M., Lagmiche, M., Dhaene, M., et al. Adsorption of beta2-microglobulin on dialysis membranes: Comparison of different dialyzers and effects of reuse procedures. International Journal of Artificial Organs, 1989, 12, 373–78.CrossRefGoogle Scholar
21.Gordon, S. M., Oetinger, C. W., Bland, C., et al. The incidence of pyrogenic reactions in patients receiving conventional or high-flux dialysis using bicarbonate dialysis. (Abstract) Kidney International, 1990, 37, 298.Google Scholar
22.Grekso, J. D., & Laos, J. B.Issues in reduced time therapy. Contemporary Dialysis and Nephrology Magazine, 1987, 8, 2022.Google Scholar
23.Held, P. J., & Pauly, M. V.Competition and efficiency in the end-stage renal disease program. Journal of Health Economics, 1983, 2, 95118.CrossRefGoogle ScholarPubMed
24.Hornberger, J. C., Chernew, M., & Petersen, . High-flux dialysis improves survival. (Abstract) Journal of the American Society of Nephrology, 1990, 1, 362.Google Scholar
25.Hornberger, J. C., Garber, A. M., & Chernew, M. A multivariate analysis of mortality and hospital admissions of high-flux dialysis. Journal of the American Society of Nephrology, in press.Google Scholar
26.Kalbfleisch, J. D., & Prentice, R. L.The statistical analysis of failure time data. New York: John Wiley & Sons, 1980.Google Scholar
27.Keshaviah, P., & Collins, A.High-efficiency hemodialysis. Contributions to Nephrology, 1989, 69, 109–19.CrossRefGoogle ScholarPubMed
28.Keshaviah, P., & Collins, A.Rapid high-efficiency bicarbonate hemodialysis. ASAIO Transactions, 1986, 32, 1723.Google ScholarPubMed
29.Klinke, B., Rockel, A., Abdelhamid, S., et al. Transmembranous transport and adsorption of beta2-microglobulin during hemodialysis using polysulfone, poluymeth. International Journal of Artificial Internal Organs, 1989, 12, 697702.CrossRefGoogle Scholar
30.Levin, N. W., Dumler, F., Zasuwa, G., & Stalla, K.Mortality comparison between conventional and high-flux dialysis. (Abstract) Journal of the American Society of Nephrology, 1990, 1, 365.Google Scholar
31.Mayer, G., Thum, J., Woloszcuk, W., & Graf, H.Beta2-microglobulin in hemodialysis patients. Effects of different dialyzers and different dialysis procedures. American Journal of Nephrology, 1988, 8, 280–84.CrossRefGoogle Scholar
32.Miller, J. G.Survival analysis. New York: John Wiley & Sons, 1981.Google Scholar
33.Naitoh, A., Tatsugushi, T., Okada, M., et al. Removal of beta2-microglobulin by diffusion alone is feasible using highly permeable dialysis membranes. ASAIO Transactions, 1988, 34, 630–34.Google Scholar
34.Petersen, J., Hyver, S., & Yeh, I.High-flux and cellulosic membranes, biocompatibility and in vivo clearances. ASAIO Transactions, 1987, 33, 265–68.Google ScholarPubMed
35.Peterson, J., Moore, R. J., Kaczmarek, R. G., et al. The effects of reprocessing cuprophane and polysulfone dialyzers on beta2-microglobulin removal from hemodialysis patients. American Journal of Kidney Disease, 1991, 17, 174–78.CrossRefGoogle Scholar
36.Rettig, R. A., & Levinsky, N. G.Kidney failure and the federal government. Washington, DC: National Academy Press, 1991.Google Scholar
37.Rockel, A., Hertel, J., Fielgel, P., et al. Permeability and secondary membrane formation of a high-flux polysulfone hemofilter. Kidney International, 1986, 30, 429–32.CrossRefGoogle ScholarPubMed
38.Ronco, C., Brendolan, A., Bragantini, L., et al. Technical and clinical evaluation of different short, highly efficient dialysis techniques. Contributions to Nephrology, 1988, 61, 4668.CrossRefGoogle ScholarPubMed
39.Ronco, C., Fabris, A., Brendolan, A., et al. High-flux haemodialysis with 1.5m2 modified cuprammonium rayon membrane: Technical and clinical evaluation. Nephrology, Dialysis, Transplantation, 1988, 3, 440–47.CrossRefGoogle Scholar
40.Ronco, C., Fabris, A., Chiaramonte, S., et al. Comparison of four different short dialysis techniques. International Journal of Artificial Organs, 1988, 11, 169–74.CrossRefGoogle ScholarPubMed
41.Ronguillo, R. M.Short time dialysis: A facility report. Contemporary Dialysis and Nephrology Magazine, 1987, 8, 1318.Google Scholar
42.Schmidt, D. F., Kurtz, S. B., & McCarthy, J. T.Inaccurate blood flow rate during efficient dialysis with high negative arterial pressure. (Abstract) Kidney International, 1989, 37, 319.Google Scholar
43.Schulman, K. A., Lynn, L. A., Glick, H. A., & Eisenberg, J. M.Cost-effectiveness of Lowdose zidovudine therapy for asymptomatic patients with human immunodeficiency virus (HIV) infection. Annals of Internal Medicine, 1991, 114, 798802.CrossRefGoogle ScholarPubMed
44.Spertini, F., Wauters, J. P., & Poulenas, I.Carpal tunnel syndrome: A frequent, invalidating long-term complication of chronic hemodialysis. Clinical Nephrology, 1984, 21, 98101.Google ScholarPubMed
45.Swartz, R. D.Dialysis associated amyloidosis (DAA). The Kidney, 1991, 23, 16.Google Scholar
46.Tannenbaum, J. S., Gibson, R. L., Pearson, J. G., et al. High-flux dialysis using a polysulfone membrane: 10 months clinical experience. (Abstract) Kidney International, 1988,33,239.Google Scholar
47.von Albertini, B.High-efficiency hemodialysis: An overview. Contributions to Nephrology, 1988, 61, 3745.CrossRefGoogle ScholarPubMed
48.Wauters, J., Bercini-Pansiot, S., Guillard, N., & Stauffer, J.Short hemodialysis: Long-term mortality and morbidity. Artificial Organs, 1986, 10, 182–84.CrossRefGoogle ScholarPubMed
49.Welch, H. G., & Larson, E. B.Cost-effectiveness of bone marrow transplantation in acute nonlymphocytic leukemia. New England Journal of Medicine, 1989, 321, 807–12.CrossRefGoogle ScholarPubMed
50.Winsett, O. E., & Wolma, F. J.Complications of vascular access for hemodialysis. Southern Medical Journal, 1985, 78, 513–17.CrossRefGoogle ScholarPubMed