Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T16:59:22.515Z Has data issue: false hasContentIssue false

UWB impulse radiation source with integrated optoelectronic generator

Published online by Cambridge University Press:  31 May 2016

Romain Négrier*
Affiliation:
XLIM/OSA Laboratory, University of Limoges, Brive-la-Gaillarde, France
Michèle Lalande
Affiliation:
XLIM/OSA Laboratory, University of Limoges, Brive-la-Gaillarde, France
Valérie Bertrand
Affiliation:
CISTEME, Limoges, France
Joël Andrieu
Affiliation:
XLIM/OSA Laboratory, University of Limoges, Brive-la-Gaillarde, France
Vincent Couderc
Affiliation:
XLIM/PHOTONIQUE Laboratory, University of Limoges, Limoges, France
Badr M. Shalaby
Affiliation:
Physics Department, Faculty of Science, Tanta University, Egypt
Laurent Pecastaing
Affiliation:
SIAME Laboratory, University of Pau, Pau, France
Antoine De Ferron
Affiliation:
SIAME Laboratory, University of Pau, Pau, France
Laurent Desrumaux
Affiliation:
DGA, Paris, France
*
Corresponding author: R. Négrier Email: [email protected]

Abstract

This paper presents an innovative design of an Ultra Wide-Band (UWB) impulse radiation source. The transmitting system is composed of an UWB antenna with an integrated optoelectronic generator, which is able to feed the system with appropriate waveforms, a pulsed high voltage source, and an optical command system. The radiation source is the elementary part of a forthcoming short-range UWB Radar with autonomous scanning capability. In this paper, we present in detail the necessary subsystems required to design the elementary radiation source. Measurements have been performed to validate the proposed radiation source and this offers a mathematical method of calculation to trace back to the radiated field at 1 m.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rotman, R.; Raz, O.; Barzilay, S.; Rotman, S.R.; Tur, M.: Wideband antenna patterns and impulse response of broadband RF phased arrays with RF and photonic beamforming. IEEE Trans. Antennas Propag., 55 (1) (2007), 3644.CrossRefGoogle Scholar
[2] Bratchilov, A.N.: Photonic beamforming in ultra-wideband phased antenna arrays: present state and perspectives, in Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 19–22 September 2006, 159164.CrossRefGoogle Scholar
[3] Lee, J.J.; Livingston, S.; Loo, B.; Jones, V.; Foster, C.: Performance of an optically fed conformal array, in Antennas and Propagation Society Int. Symp., vol. 2, 1994, 828–831, Digital Object Identifier:10.1109/APS.1994.407964.Google Scholar
[4] Lalande, M. et al. : An ultra wide band impulse optoelectronic radar: RUGBI. Prog. Electromag. Res. PIER B, 11 (2009), 205222.CrossRefGoogle Scholar
[5] Desrumaux, L.; Godard, A.; Lalande, M.; Bertrand, V.; Andrieu, J.; Jecko, B.: An original antenna for transient high power UWB arrays: the shark antenna. IEEE Trans. Antennas Propag., 58 (8) (2010), 25152522.CrossRefGoogle Scholar
[6] Bertrand, V. et al. : Equivalent model of photoswitch: application to the UWB antenna design integrating impulse feeding. Prog. Electromag. Res. C, 46 (2014), 145151.CrossRefGoogle Scholar
[7] Négrier, R. et al. : UWB antenna array with autonomous scanning capability using opto-electronic feeding device, in Int. Conf. on Antenna Measurements and Applications – Focus on Antenna Systems, Antibes – Juan-Les-Pins, France, 16–19 November 2014.CrossRefGoogle Scholar
[8] Négrier, R.; Bertrand, V.; Lalande, M.; Andrieu, J.; Couderc, V.; Pecastaing, L.; Ferron, A.D.: Improvement of an UWB impulse radiation source by integrating photoswitch device, in European Radar Conf. 2014, Fiera di Roma – Rome, Italy, 5–10 October 2014.Google Scholar
[9] Nunnally, W.: High-power microwave generation using optically activated semiconductor switches. IEEE Trans. Electron Devices, 37 (12) (1990), 24392448.CrossRefGoogle Scholar
[10] Riaziat, M.L.; Nishimoto, C.K.: Compact optically triggered microwave pulse generator. Microw. Opt. Technol. Lett., 5 (5) (1992), 211215.CrossRefGoogle Scholar
[11] Best, S.; Rose, M.; Shotts, Z.; Rader, M.; Altgilbers, L.: Frozen Wave Generator technology as a source of constant amplitude high power high frequency radio frequency pulses, in 2013 19th IEEE Pulsed Power Conf. (PPC), San Francisco, CA, June 2013, 1–6.CrossRefGoogle Scholar
[12] Koshelev, V.; Buyanov, Y.; Andreev, Y.; Plisko, V.; Sukhushin, K.: Ultrawideband radiators of high-power pulses. Pulsed Power Plasma Sci. 2001 Digest Tech. Papers, 2 (2001), 16611664.Google Scholar
[13] Gerhard, C.; Druon, F.; Georges, P.; Couderc, V.; Leproux, P.: Stable mode-locked operation of a low repetition rate diode-pumped Nd: GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror. Opt. Express, 14 (16) (2006), 70937098. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00127373 CrossRefGoogle Scholar
[14] Kardo-Sysoev, A.: Generation and radiation of uwb-signals, in Microwave Conf., 2003 33rd European, Munich, Germany, October 2003, 845–848.CrossRefGoogle Scholar
[15] Diot, J.-C. et al. : Impulse optoelectronic ultra-wide band antenna array, in 2006 First European Conference on Antennas and Propagation, Nice, France, November 2006, 1–6.CrossRefGoogle Scholar