Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T13:02:12.675Z Has data issue: false hasContentIssue false

Power controlled FM-UWB system with a wideband RF carrier for body area network applications

Published online by Cambridge University Press:  22 January 2014

Heejong Lee
Affiliation:
Department of Info. & Comm. Eng., Soonchunhyang University, Chungnam 336–745, Republic of Korea. Phone: +82 41 530 1343 U–Tel Co., Ltd., Gunpo, Gyeonggi 435–832, Republic of Korea
Seok-Jae Lee
Affiliation:
Department of Info. & Comm. Eng., Soonchunhyang University, Chungnam 336–745, Republic of Korea. Phone: +82 41 530 1343
Won-Sang Yoon
Affiliation:
Samsung Thales Ltd., Seongnam, Gyeonggi 463-400, Republic of Korea
Sang-Min Han*
Affiliation:
Department of Info. & Comm. Eng., Soonchunhyang University, Chungnam 336–745, Republic of Korea. Phone: +82 41 530 1343
*
Corresponding author: S.-M. Han Email: [email protected]

Abstract

An FM-ultra-wideband (UWB) system with a wideband RF carrier (WRC) is proposed for wireless body area network applications. The proposed system can control the channel power by means of an adjustable carrier bandwidth (BW), while the conventional one with a CW carrier (CWC) makes use of peak power control. The implemented WRC system performances have been evaluated for the WRC generation and digital data transmission. In addition, transmission performances have been compared with that of a conventional CWC system by bit-error-rate (BER) tests. For random data of a 29−1 pattern at a data-rate of 64 kbps, in spite of the flexible carrier BW, the WRC system has presented excellent transmission capability compared with that of the CWC system.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Preradovic, S.; Karmakar, N.C.; Balbin, I.: RFID transponders. IEEE Microw. Mag., 9 (2008), 90103.Google Scholar
[2]Fontana, R.J.: Recent system applications of short–pulse ultra–wideband (UWB) technology. IEEE Trans. Microw. Theory Tech., 52 (2004), 20872104.Google Scholar
[3]Han, S.-M.; Popov, O.; Dmitriev, A.: Flexible chaotic UWB communication system with adjustable channel bandwidth in CMOS technology. IEEE Trans. Microw. Theory Tech., 56 (2008), 22292236.Google Scholar
[4]Lee, H.; Lee, S.-J.; Choi, T.; Lim, J.; Yoon, W.-S.; Han, S.-M.: Wideband RF transceiver system with adjustable RF carrier, in Int. Symp. Antennas Propag., Jeju, Korea, 2011.Google Scholar
[5]Han, S.-M.; Son, M.-H.; Kim, Y.-H.: Chaotic UWB communication system for low–rate wireless connectivity applications. IEICE Trans. Commun., 90–B (2007), 28912896.Google Scholar
[6]Aiello, G.R.; Rgerson, G.D.: Ultra–wideband wireless systems. IEEE Microw. Mag., 4 (2003), 3647.Google Scholar
[7]Baykas, T.; Sum, C.-S.; Lan, Z.; Wang, J.; Rahman, M.A.; Harada, H.: IEEE 802.15.3c: the first IEEE wireless standard for data rate over 1 Gb/s. IEEE Commun. Mag., 49 (2011), 114121.CrossRefGoogle Scholar
[8]IEEE Standard 802.15.4a: Part 15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low–rate Wireless Personal Area Networks (LR–WPAN), IEEE Press, 2005.Google Scholar
[9]Wang, L.; Min, X.; Chen, G.: Performance of SIMO FM–DCSK UWB system based on chaotic pulse cluster signals. IEEE Trans. Circuits Syst. I, Reg. Pap., 58 (2011), 22592268.Google Scholar
[10]Flury, M.; Merz, R.; Boudec, J.-Y.L.: Synchronization for impulse–radio UWB with energy–detection and multi–user interference: algorithms and application to IEEE 802.15.4a. IEEE Trans. Signal Process., 59 (2011), 54585472.Google Scholar
[11]Bae, J.; Song, K.; Lee, H.; Cho, H.; Yoo, H.-J.: A 0.24–nJ/b wireless body–area–network transceiver with scalable double–FSK modulation. IEEE J. Solid-State Circuits, 47 (2012), 310322.Google Scholar
[12]IEEE Standard for Local and Metropolitan Area Networks: Part 15.6: Wireless Body Area Network, IEEE Press, 2012.Google Scholar
[13]Imai, M.; Takeuchi, Y.; Sakanushi, K.; Iwato, H.: Biological information sensing technologies for medical, health care and wellness applications, in Asia South Pacific Design Automation Conf., Yokohama, Japan, 2011.Google Scholar
[14]Zhang, F. et al. : UWB impulse radio transmitter using an electrooptic phase modulator together with a delay interferometer. IEEE Photonics Tech. Lett., 22 (2010), 14791481.Google Scholar
[15]Ishikawa, R.; Honjo, K.: Impulse UWB T/R MMIC modules for baseband digital signals, in European Microwave Conf., Paris, France, September 2010.Google Scholar
[16]Colli-Vignarelli, J.; Dehollain, C.: A discrete–components impulse–radio ultrawide–band (IR–UWB) transmitter. IEEE Trans. Microw. Theory Tech., 59 (2011), 11411146.Google Scholar
[17]Qin, B. et al. : 1.8 pJ/pulse programmable Gaussian pulse generator for full–band noncarrier impulse–UWB transceivers in 90–nm CMOS. IEEE Trans. Ind. Electron., 57 (2010), 15551562.Google Scholar
[18]Wang, X. et al. : A whole–chip ESD–protected 0.14–pJ/p–mV 3.1–10.6–GHz impulse–radio UWB transmitter in 0.18–μm CMOS. IEEE Trans. Microw. Theory Tech., 59 (2011), 11091116.Google Scholar
[19]Nair, M.U.; Zheng, Y.; Ang, C.W.; Lian, Y.; Yuan, X.; Heng, C.-H.: A low SIR impulse–UWB transceiver utilizing chirp FSK in 0.18 µm CMOS. IEEE J. Solid-State Circuits, 45 (2010), 23882403.Google Scholar
[20]Chen, X.; Kiaei, S.: Monocycle shapes for ultra wideband system, in IEEE Int. Symp. Circuits and Systems, Scottsdale, USA, May 2002.Google Scholar
[21]Djoumessi, E.E.; Tatu, S.; Wu, K.: Frequency–agile dual–band direct conversion receiver for cognitive radio systems. IEEE Trans. Microw. Theory Tech., 58 (2010), 8794.Google Scholar
[22]Carlowitz, C.; Esswein, A.; Weigel, R.; Vossiek, M.: A low power pulse frequency modulated UWB radar transmitter concept based on switched injection locked harmonic sampling, in German Microwave Conf., Ilmenau, Germany, March 2012.Google Scholar
[23]IEEE Standard 802.15.4: P802.15.4a alt PHY Selection Criteria, IEEE Press, 2004.Google Scholar