Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T01:10:05.207Z Has data issue: false hasContentIssue false

Variable Z0 antenna technology: a new approach for IoT wireless

Published online by Cambridge University Press:  12 May 2014

Richard A. Formato*
Affiliation:
Cataldo & Fisher, LLC, P.O. Box 1714, Harwich, MA 02645, USA. Phone: +1 508 896 0060
*
Corresponding author: R.A. Formato Email: [email protected]

Abstract

Variable Z0 (VZ0) antenna technology is a new design or optimization methodology applicable to any antenna on any platform designed or optimized with any procedure. It should be particularly useful for wireless devices populating the Internet of Things. VZ0 expands the design or decision space by adding another degree of freedom invariably leading to better antennas. A simple design example illustrates its effectiveness.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Xiang, C.; Li, X.: General analysis on architecture and key technologies about Internet of Things, In 2012 IEEE 3rd Int. Conf. Software Engineering and Science Service (ICSESS), Beijing, China, 20–24 June 2012, 325328.Google Scholar
[2]Mayordomo, I. et al. : Emerging technologies and challenges for the Internet of Things, In 2011 IEEE 54th Int. Midwest Symp. Circuit and Systems, Seoul, Korea, 7–10 August 2011, 14.Google Scholar
[3]Tarricone, L.: Electromagnetics and information technology: much more than high performance computing, In Proc. 5th European Conf. Antennas and Propagation. (EUCAP), Rome, Italy, 11–15 April 2011, 39873990.Google Scholar
[4]Shen, J.; Lu, X.; Li, H.; Xu, F.: Heterogeneous multi-layer access and RRM for the Internet of Things, In 2010 5th Int. ICST Conf. Communication and Network in China (CHINACOM), Beijing, China, 25–27 August 2010, 15.Google Scholar
[5]Guo, L.G.; Huang, Y.R.; Qu, L.G.: Investigation of architecture, key technology and application strategy for the Internet of Things, In Cross Strait Quad-Regional Radio Science and Wireless Technique Conf. (CSQRWC), vol. 2, Harbin, China, 26–30 July 2011, 11961199.Google Scholar
[6]Andrea Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M.: Internet of Things for smart cities. IEEE IoT J., pp(99) (2014), 111.Google Scholar
[7]Jina, J.; Gubbib, J.; Marusic, S.; Palaniswami, M.: An information framework of creating a smart city through Internet of Things. IEEE IoT J., (2014).Google Scholar
[8]Kokkoniemi, J.; Ylitalo, J.; Luoto, P.; Scott, S.; Leinonen, J.; Latva-aho, M.: Performance evaluation of vehicular LTE mobile relay nodes, In 2013 IEEE 24th Int. Symp. Personal, Indoor and Mobile Radio Communication: Mobile and Wireless Networks, London, UK, 8–11 September 2013, 19721976.Google Scholar
[9]Xiong, Y.; Giuseppe, V.; Occhiuzzi, C.; Marrocco, G.; Caizzone, S.; Quijano, J.A.: Optimization of multichip RFID tag antenna with genetic algorithm and method of moments, In 2013 IEEE Antenna and Propagation Society Int. Symp. (APSURSI), Orlando, FL, 7–13 July 2013, 416417.Google Scholar
[10]Variable Z0 Antenna Device Design System and Method, by Formato (2012, Dec. 27). U.S. Pat. App. Pub. No. US2012/0331436 A1 (allowed, continuation pending). http://appft.uspto.gov.Google Scholar
[11]Formato, R.A.: Improving bandwidth of Yagi–Uda arrays. Wirel. Eng. Technol., 2012 (2012), 1824.Google Scholar
[12]Dib, N.I.; Sharaqa, A.; Formato, R.A.: Variable Z0 applied to the optimal design of multi-stub matching network and a meander monopole. Int. J. Micro. Wirel. Tech., (2013), 110. doi: 10.1017/S1759078713001049.Google Scholar
[13]Sharaqa, A.; Dib, N.I.; Formato, R.A.: Variable Z0 applied to biogeography based optimized multi-stub matching network, In Presented at the 2013 IEEE Int. Symp. Antenna Propagation and USNC-URSI National Radio Science Meeting, Orlando, FL, 7–13 July 2013.Google Scholar
[14]Formato, R.A.: Variable Z0 – a new antenna design paradigm. VHF Commun., 1 (2012), 1823.Google Scholar
[15]Formato, R.A.A.: Novel Methodology for Antenna Design and Optimization: Variable Z0 (ver. 2). http://arXiv.org/abs/1107.1437.Google Scholar
[16]Quan, X.L.; Li, R.L.; Wang, J.Y.; Cui, Y.H.: Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations. Prog. Electromagn. Res., 128 (2012), 441456.Google Scholar
[17]Li, Y.S.; Yang, X.D.; Liu, C.Y.; Jiang, T.A.: Sleeve monopole antenna with wide impedance bandwidth for indoor base station applications. Prog. Electromagn. Res. C, 16 (2010), 223232.Google Scholar
[18]Moradi, K.; Nikmehr, S.: A dual-band dual-polarized microstrip array antenna for base stations. Prog. Electromagn. Res., 123 (2012), 527541.Google Scholar
[19]Casula, G.A.; Mazzarella, G.; Montisci, G.: Structure-based evolutionary programming design of broadband wire antennas. Int. J. Antenna Propag., 2013, art. ID 945408, 8. http://dx.doi.org/10.1155/2013/945408.Google Scholar
[20]Fanti, A.; Maxia, T.; Musu, C.: A wire antenna for broadband WLAN and Wi-Fi applications, In 9th Int. Wireless Communication and Mobile Computational Conf. (IWCMC), Cagliari, Sardinia, Italy, 1–5 July 2013, 763768.Google Scholar
[21]Casula, G.A.; Mazzarella, G.; Sirena, N.: Evolutionary design of wide-band parasitic dipole arrays. IEEE Trans. Antenna Propag., 59 (2011), 40944102.CrossRefGoogle Scholar
[22]Formato, R.A.: Improved CFO algorithm for antenna optimization. Prog. Electromagn. Res. B., 19 (2010), 405425. http://www.jpier.org/PIERB/pier.php?paper=09112309.Google Scholar
[23]Formato, R.A.: Central force optimization with variable initial probes and adaptive decision space. App. Math. Comput., 217 (2011), 88668872.CrossRefGoogle Scholar
[24]Formato, R.A.: Issues in antenna optimization – a monopole case study. Appl. Electron. Soc. J., 28 (2013), 11221133.Google Scholar
[25]Burke, G.J.: Numerical electromagnetics code – NEC-4.2 method of moments, Part I: user's manual, Lawrence Livermore Nat. Lab., Livermore, CA, Report LLNL-SM-490875, July 2011.Google Scholar
[26]Formato, R.A.: Pi Fractions for Generating Uniformly Distributed Sampling Points in Global Search and Optimization Algorithms. http://arxiv.org/abs/1401.3038.Google Scholar
[27]Formato, R.A.: VSO-optimized dipole-loaded monopole. British J. Appl. Sci. Technol., 4 (2014), 912928.Google Scholar