Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T14:01:28.089Z Has data issue: false hasContentIssue false

SIP antenna on 0.13 µm SiGe technology at 79 GHz for SRR automotive radar

Published online by Cambridge University Press:  18 January 2010

Yenny Pinto*
Affiliation:
Lab-STICC/TELECOM Bretagne, CS 83818, 29238 Brest Cedex 03, France.
Christian Person
Affiliation:
Lab-STICC/TELECOM Bretagne, CS 83818, 29238 Brest Cedex 03, France.
Daniel Gloria
Affiliation:
STMicroelectronics, Technology R&D 850 Rue Jean Monnet, 38926 Crolles, France.
Andreia Cathelin
Affiliation:
STMicroelectronics, Technology R&D 850 Rue Jean Monnet, 38926 Crolles, France.
Didier Belot
Affiliation:
STMicroelectronics, Technology R&D 850 Rue Jean Monnet, 38926 Crolles, France.
Sébastien Pruvost
Affiliation:
STMicroelectronics, Technology R&D 850 Rue Jean Monnet, 38926 Crolles, France.
Robert Plana
Affiliation:
LAAS-CNRS, 7 avenue du colonel roche, 31077, Toulouse, France.
*
Corresponding author: Yenny Pinto Email: [email protected]

Abstract

This paper describes the analysis and the design of an integrated antenna on 0.13 µm SiGe BICMOS technology. A non-resonant dipole antenna integrated on SiGe is electromagnetically coupled to a radiating element reported on a printed circuit board (PCB) substrate. This integrated solution, also compatible with system in package (SIP) concept, provides significant improvements with respect to direct System On Chip (SoC) integration. The main objective of this SIP antenna lies on the optimization of integrated millimeter wave front-ends modules, considering the immediate antenna environment (especially the lossy substrate and technological dielectric/metallic levels), in order to achieve performances compatible with short range radar specifications at 79–81 GHz. One solution, using a RT/Rogers Duroid 6006 PCB (er = 6, thickness h = 127 µm), is presented, providing a 2.93 dBi gain, and 45% radiation efficiency antenna.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Margomenos, A.: A comparison of Si CMOS and SiGe BiCMOS technologies for automotive radars, in Proc. SiRF'09 IEEE Topical Meeting on, Jan 2009, 14.CrossRefGoogle Scholar
[2]Menzel, W.: 50 years of millimeter-waves: a journey of development. Microw. J., 51 (8) (2008), 2842.Google Scholar
[3]Iizuka, H. et al. : “Millimetre-wave microstrip array antenna with high efficiency for automotive radar systems”, Special Issue Millimetre-Wave Radar for Automotive Applications, Research Report, R&D Review of Toyota CRDL Vol. 37, No. 2, Report received on April 23, 2002.Google Scholar
[4]Jehamy, E.: Contributions a la synthèse d'antennes focalisantes pour applications en bande millimétrique. PhD. thesis, Universite de Bretagne Occidentale, Brest, France, Dec. 2005.Google Scholar
[5]Schoenlinner, B. et al. : Wide-scan spherical-lens antennas for automotive radars. IEEE Trans. Microw. Theory Tech., 50 (9) (2002), 21662175.CrossRefGoogle Scholar
[6]Pliz, D.; Menzel, W.: Folded reflectarray antenna. Electron. Lett., 34 (9) (1998), 832833.CrossRefGoogle Scholar
[7]Zhang, Y.P. On-chip antennas for 60-GHz radios in silicon technology. IEEE Trans. Electron Dev., 52 (7) (2005), 16641668.CrossRefGoogle Scholar
[8]Segura, N. et al. : On-wafer radiation pattern measurements of integrated antennas on standard BiCMOS and Glass processes for 40–80 GHz applications, in Proc. IEEE 2005 Int. Conf. Microelectronic Test Structures, Vol 18, paper 6.1, 2005, 107.Google Scholar
[9]Pinto, Y. et al. : 79 GHz integrated antenna on low resistivity Si BiCMOS exploiting above-IC processing, in Proc. Eucap., 2009.Google Scholar
[10]Montusclat, S. et al. : Silicon integrated antenna developments up to 80 GHz for millimeter wave wireless links,in Wireless Technology 2005. The European Conference, Oct. 3–4, 2005, 237240.CrossRefGoogle Scholar
[11]Barakat, M. et al. : Performance of a 0.13 µm SOI integrated 60 GHz dipole antenna, in Antennas and Propagation Society International Symposium, 2007 IEEE, June 9–15, 2007, 14931496.CrossRefGoogle Scholar
[12]Hoivik, N. et al. : High-efficiency 60 GHz antenna fabricated using low-cost silicon micromachining techniques, in Antennas and Propagation Society International Symposium, 2007 IEEE, June 9–15, 2007, 50435046.CrossRefGoogle Scholar
[13]Grenier, K. et al. : IC compatible MEMS technology, in Proc. 13th GAAS Symposium., Paris, 2005, 293296.Google Scholar
[14]Öjefors, E. et al. : Micromachined loop antennas on low resistivity silicon substrates. IEEE Trans. Antennas Propag., 54 (12) (2006), 35933601.CrossRefGoogle Scholar
[15]Pinto, Y. et al. : Hybrid integrated antenna on silicon for automotive short range radar applications at 79 GHz, in Proc. EuMC, 2008, October 2008.CrossRefGoogle Scholar
[16]Grenier, K. et al. : Polymer based technologies for microwave and millimeterwave applications. in IEEE Int. Electron Device Meeting 2004, December 13–15, 2004, 545548.Google Scholar