Published online by Cambridge University Press: 29 May 2020
In this paper, three compact, high-efficiency, gain enhanced antennas, and corresponding rectifiers have been proposed for GSM1800, 3G, and 4G-LTE energy harvesting applications. The inverted L-stub is placed on the ground plane of the monopole antenna to get the desired frequency band of GSM1800 MHz. The feed length variation method has been adopted for the slot antennas to obtain the required frequency of 3G and 4G-LTE cellular bands. The performance of antennas is analyzed with the inverted L-stub, feed length variation, and the reflector distance. The maximum gain achieved with the reflector positioned at a distance of λ/4 from the antenna backside is three times greater than the gain obtained without the reflector. The prototype antennas and rectifiers have been simulated, fabricated, measured various parameters, and compared with the simulation results. The antennas provide more than 82% radiation efficiency and an enhanced gain of greater than 5.6 dB. The peak efficiency of rectifiers of more than 30% has been achieved. The aforementioned three antennas are integrated with their corresponding rectifiers for operating at 1.8, 2.1, and 2.3 GHz frequencies. The proposed rectennas are formidably suitable for the reception of RF power from the cellular bands.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.