Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T01:12:14.296Z Has data issue: false hasContentIssue false

Broadband capacitively grounded coplanar to coupled microstrip transition for planar microwave photonic components

Published online by Cambridge University Press:  09 September 2016

Massinissa Hadjloum*
Affiliation:
Lunam Université, Université de Nantes, UMR CNRS 6164: Institut d'Electronique et de Télécommunications de Rennes, Faculté des Sciences et Techniques, 2 Chemin de la Houssinière, BP 92208, 44322 Nantes cedex 3, France. Phone: 00 33 251125535
Mohammed El Gibari
Affiliation:
Lunam Université, Université de Nantes, UMR CNRS 6164: Institut d'Electronique et de Télécommunications de Rennes, Faculté des Sciences et Techniques, 2 Chemin de la Houssinière, BP 92208, 44322 Nantes cedex 3, France. Phone: 00 33 251125535
Hongwu Li
Affiliation:
Lunam Université, Université de Nantes, UMR CNRS 6164: Institut d'Electronique et de Télécommunications de Rennes, Faculté des Sciences et Techniques, 2 Chemin de la Houssinière, BP 92208, 44322 Nantes cedex 3, France. Phone: 00 33 251125535
Afshin S. Daryoush
Affiliation:
Department of ECE, Drexel University, Philadelphia, PA 19104, USA
*
Corresponding author: M. Hadjloum Email: [email protected]

Abstract

Broadband transitions are presented in this paper for capacitively grounded coplanar waveguide to coupled microstrip (CMS) lines. These transitions are realized on both thick Rogers RO3003 substrate (thickness of 10 mils) and a thin benzocyclobutene (BCB) polymer film (thickness of 20 µm). A flat bandwidth of 4–20 GHz and 3.2 to over 40 GHz are measured for the RO3003 and BCB polymer substrates, respectively. These performances are obtained without making via-hole in the substrate or patterning the bottom ground plane, which makes this broadband transition easier to fabricate compared with the via-hole-based grounded CPW–CMS transitions.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Garcia-Garcia, J. et al. : Spurious pass-band suppression in microstrip coupled line band pass filters by means of split ring resonators. IEEE Microw. Wireless Compon. Lett., 14 (2004), 416418.CrossRefGoogle Scholar
[2] Islam, R.; Elek, F.; Eleftheriades, G.V.: Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow. Electron. Lett., 40 (2004), 315317.Google Scholar
[3] Daryoush, A.S.; Hou, X.; Rosen, W.: All-optical ADC and its applications in future communication satellites, in IEEE Int. Topical Meeting on Microwave Photonics (MWP 2004), Ogunquit, Maine, USA, 2004, 182185.Google Scholar
[4] Enokihara, A.; Yajima, H.; Kosaki, M.; Murata, H.; Okamura, Y.: Guided-wave electro-optic modulator using resonator electrode of coupled microstrip lines. Electron. Lett., 39 (2003), 16711673.Google Scholar
[5] Hadjloum, M.; El-Gibari, M.; Ginestar, S.; Li, H.W.; Daryoush, A.S.: Via-hole less broadband conductor-backed coplanar waveguide to coupled microstrip transition up to 40 GHz. Prog. Electromagn. Res. Lett., 56 (2015), 4751.CrossRefGoogle Scholar
[6] Sun, T.; Zhang, L.; Receveur, K.; Poddar, A.K.; Rohde, U.L.; Daryoush, A.S.: Oscillator Phase Noise Reduction using Optical Feedback with Dual Drive Mach-Zehnder Modulator, in IEEE MTT-S International Microwave Symp. Digest (IMS 2015), Phoenix, Arizona, USA, 2015.CrossRefGoogle Scholar
[7] Hadjloum, M.; El Gibari, M.; Gundel, H.W.; Li, H.W.; Daryoush, A.S.: Ultra-wideband GCPW-CMS-GCPW transition for characterization of all-optical ADCs based on leaky waveguide deflector, in IEEE 22nd Telecommunications Forum (TELFOR 2014), Belgrade, Serbia, 2014, 356359.CrossRefGoogle Scholar
[8] Gates, B.D.: Nanofabrication with molds & stamps. Mater. Today, 8 (2005), 4449.CrossRefGoogle Scholar
[9] Zhou, Z.; Melde, K.L.: Development of a broadband coplanar waveguide-to-microstrip transition with vias. IEEE Trans. Adv. Packag., 31 (2008), 861872.Google Scholar
[10] Zheng, G.; Papapolymerou, J.; Tentzeris, M.M.: wideband coplanar waveguide RF probe pad to microstrip transitions without via holes. IEEE Microw. Wireless Compon. Lett., 13 (2003), 544546.Google Scholar
[11] El-Gibari, M.; Averty, D.; Halbwax, M.; Vilcot, J.P.; Li, H.W.: Comprehensive study of ultra broadband GCPW-MS transition on thin films. Microw. Opt. Technol. Lett., 57 (2015), 20412045.CrossRefGoogle Scholar
[12] Hadjloum, M.; El-Gibari, M.; Li, H.W.; Daryoush, A.S.: An ultra-wideband dielectric material characterization method using grounded coplanar waveguide and genetic algorithm optimization. Appl. Phys. Lett., 107 (2015), 142908.CrossRefGoogle Scholar