Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:16:49.777Z Has data issue: false hasContentIssue false

Prior indigenous technological species

Published online by Cambridge University Press:  01 June 2017

Jason T. Wright*
Affiliation:
Department of Astronomy & Astrophysics and Center for Exoplanets and Habitable Worlds 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802, USA Department of Astronomy Breakthrough Listen Laboratory 501 Campbell Hall #3411, University of California, Berkeley, CA 94720, USA PI, NASA Nexus for Exoplanet System Science

Abstract

One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdrakhimov, A.M., Basilevsky, A.T., Head, J.W. & Robinson, M.S. (2011). Luna 17/Lunokhod 1 and Luna 21/Lunokhod 2 Landing Sites as Seen by the Lunokhod and LRO Cameras. In Lunar and Planetary Science Conference (p. 2220). Volume 42 of Lunar and Planetary Inst. Technical Report. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2220.pdf.Google Scholar
Basilevsky, A.T. & Head, J.W. (1998). The geologic history of Venus: a stratigraphic view. J. Geophys. Res.: Planets 103, 85318544. http://dx.doi.org/10.1029/98JE00487. DOI: 10.1029/98JE00487.CrossRefGoogle Scholar
Burke-Ward, R. (2000). Possible existence of extra-terrestrial technology in the Solar System. J. Br. Interplanet. Soc. 53, 212.Google Scholar
Ćirković, M.M. & Vukotić, B. (2016). Long-term prospects: mitigation of supernova and gamma-ray burst threat to intelligent beings. Acta Astronaut. 129, 438446. DOI: 10.1016/j.actaastro.2016.10.005. arXiv:1611.06096.CrossRefGoogle Scholar
Craddock, R.A. & Howard, A.D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res. (Planets) , 107, 21–1. DOI: 10.1029/2001JE001505.CrossRefGoogle Scholar
Davies, P.C.W. (2012). Footprints of alien technology. Acta Astronaut. 73, 250257. DOI: 10.1016/j.actaastro.2011.06.022.CrossRefGoogle Scholar
Davies, P.C.W. & Wagner, R.V. (2013). Searching for alien artifacts on the moon. Acta Astronaut. 89, 261265. DOI: 10.1016/j.actaastro.2011.10.022.CrossRefGoogle Scholar
Denisenko, D. & Lipunov, V. (2013). MASDB2 identified with the manmade object. Astronomer's Telegram, 5616. http://www.astronomerstelegram.org/?read=5616.Google Scholar
Farley, K.A. et al. (2014). In situ radiometric and exposure age dating of the martian surface. Science 343, 1247166. DOI: 10.1126/science.1247166.CrossRefGoogle ScholarPubMed
Fassett, C.I. & Head, J.W. (2008). The timing of martian valley network activity: constraints from buffered crater counting. Icarus 195, 6189. DOI: 10.1016/j.icarus.2007.12.009.CrossRefGoogle Scholar
Freitas, R.A. Jr. (1983 a). Extraterrestrial intelligence in the Solar System – resolving the fermi paradox. J. Br. Interplanet. Soc. 36, 496500.Google Scholar
Freitas, R.A. Jr. (1983 b). If they are here, where are they? Observational and search considerations. Icarus 55, 337343. DOI: 10.1016/0019-1035(83)90086-6.CrossRefGoogle Scholar
Freitas, R.A. Jr. & Valdes, F. (1980). A search for natural or artificial objects located at the earth-moon libration points. Icarus 42, 442447. DOI: 10.1016/0019-1035(80)90106-2.CrossRefGoogle Scholar
Gertz, J. (2016). ET probes: looking here as well as there. ArXiv e-prints, arXiv:1609.04635.Google Scholar
Gorman, A. (2005). The archaeology of orbital space, (p. 338). http://search.informit.com.au/documentSummary;dn=045519755996948;res=IELENG.Google Scholar
Grotzinger, J.P. et al. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350. DOI: 10.1126/science.aac7575.CrossRefGoogle ScholarPubMed
Haqq-Misra, J. & Kopparapu, R.K. (2012). On the likelihood of non-terrestrial artifacts in the Solar System. Acta Astronaut. 72, 1520. DOI: 10.1016/j.actaastro.2011.10.010. arXiv:1111.1212.CrossRefGoogle Scholar
Hart, M.H. (1975). Explanation for the absence of extraterrestrials on Earth. QJRAS 16, 128.Google Scholar
Hogan, J. (1977). Inherit the Stars. A Del Rey book. Ballantine Books. https://books.google.com/books?id=en49Q415InQC.Google Scholar
Isaacson, H. et al. (2017). The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies. ArXiv e-prints, arXiv:1701.06227.Google Scholar
Kubrick, S. (1968). 2001: A Space Odyssey. Metro-Goldwyn-Mayer.Google Scholar
Loeb, A. & Turner, E.L. (2012). Detection technique for artificially illuminated objects in the outer Solar System and beyond. Astrobiology, 12, 290294. DOI: 10.1089/ast.2011.0758. arXiv:1110.6181.CrossRefGoogle ScholarPubMed
Lowell, P. (1895). Mars. Houghton, Mifflin. https://books.google.com/books?id=w9JJAAAAMAAJ.Google Scholar
MacLeod, K. (2010). Cosmonaut Keep: The Opening Novel in An Astonishing New Future History. Engines of Light. Tom Doherty Associates. https://books.google.com/books?id=NpgqRMefzwgC.Google Scholar
Masursky, H., Boyce, J.M., Dial, A.L., Schaber, G.G. & Strobell, M.E. (1977). Classification and time of formation of Martian channels based on Viking data. J. Geophys. Res. 82, 40164038. DOI: 10.1029/JS082i028p04016.CrossRefGoogle Scholar
Melosh, H.J. (1988). The rocky road to panspermia. Nature 332, 687688. DOI: 10.1038/332687a0.CrossRefGoogle ScholarPubMed
Niven, L. (2007). The Draco Tavern. Tom Doherty Associates. https://books.google.com/books?id=WLuLgG6148IC.Google Scholar
Papagiannis, M.D. (1978). Are we all alone, or could they be in the Asteroid Belt? QJRAS 19, 277.Google Scholar
Pollack, J.B., Kasting, J.F., Richardson, S.M. & Poliakoff, K. (1987). The case for a wet, warm climate on early Mars. Icarus 71, 203224. DOI: 10.1016/0019-1035(87)90147-3.CrossRefGoogle ScholarPubMed
Ramirez, R.M., Kopparapu, R., Zugger, M.E., Robinson, T.D., Freedman, R. & Kasting, J.F. (2014). Warming early Mars with CO2 and H2 . Nat. Geosci. 7, 5963. DOI: 10.1038/ngeo2000. arXiv:1405.6701.CrossRefGoogle Scholar
Sawyer, R. (2007). Far-Seer: Book One of the Quintaglio Ascension. The Quintaglio Trilogy. Tom Doherty Associates. https://books.google.com/books?id=YiNTxagEg0AC.Google Scholar
Shklovskiĭ, I. & Sagan, C. (1998). Intelligent Life in the Universe. Emerson-Adams Press. https://books.google.com/books?id=QrnoPwAACAAJ.Google Scholar
Squyres, S.W. et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 17091714. DOI: 10.1126/science.1104559.CrossRefGoogle ScholarPubMed
Szalay, J.R. & Horányi, M. (2016). Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements. Geophys. Res. Lett., 43, 48934898. DOI: 10.1002/2016GL069148.CrossRefGoogle Scholar
Tao, Y. & Muller, J.-P. (2016). Super-resolution restoration applied to the characterisation of dynamic surface changes on the Martian surface. In AAS/Division for Planetary Sciences Meeting Abstracts (p. 513.09). Volume 48 of AAS/Division for Planetary Sciences Meeting Abstracts.Google Scholar
Turcotte, D.L. (1993). An episodic hypothesis for Venusian tectonics. J. Geophys. Res.: Planets 98, 1706117068. http://dx.doi.org/10.1029/93JE01775. DOI: 10.1029/93JE01775.CrossRefGoogle Scholar
Wagner, R.V., Nelson, D.M., Plescia, J.B., Robinson, M.S., Speyerer, E.J. & Mazarico, E. (2017). Coordinates of anthropogenic features on the Moon. Icarus 283, 92103. DOI: 10.1016/j.icarus.2016.05.011.CrossRefGoogle Scholar
Way, M.J., Del Genio, A.D., Kiang, N.Y., Sohl, L.E., Grinspoon, D.H., Aleinov, I., Kelley, M. & Clune, T. (2016). Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 83768383. http://dx.doi.org/10.1002/2016GL069790. DOI: 10.1002/2016GL069790. 2016GL069790.CrossRefGoogle ScholarPubMed
Wells, L.E., Armstrong, J.C. & Gonzalez, G. (2003). Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icarus 162, 3846. DOI: 10.1016/S0019-1035(02)00077-5.CrossRefGoogle Scholar
Worth, R.J., Sigurdsson, S. & House, C.H. (2013). Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 13, 11551165. DOI: 10.1089/ast.2013.1028. arXiv:1311.2558.CrossRefGoogle ScholarPubMed
Wright, J.T., Mullan, B., Sigurdsson, S. & Povich, M.S. (2014). The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. ApJ 792, 26. DOI: 10.1088/0004-637X/792/1/26. arXiv:1408.1133.CrossRefGoogle Scholar
Zahnle, K., Dones, L. & Levison, H.F. (1998). Cratering rates on the Galilean Satellites. Icarus 136, 202222. DOI: 10.1006/icar.1998.6015.CrossRefGoogle ScholarPubMed
Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. (2011). The anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369, 835841. DOI: 10.1098/rsta.2010.0339.Google ScholarPubMed