An optimum solution to a deconvolution problem has to fulfil three general criteria: (a) an explicit recognition of the smoothing nature of convolution; (b) a statistical treatment of noise, e.g., using the least-squares criterion; and (c) requiring the solution to conform to all our prior knowledge about it. In the usual least-squares method, one minimises a variance of ‘residuals’, or the departures of the observed data from the values expected according to the recovered solution. However, this condition does not lead to a stable solution in the case of deconvolution, since the only stable solutions are those conforming to a criterion of ‘regularisation’ or smoothness (see, e.g., Tikhonov and Arsenin 1977). In our method, the stability is achieved by minimising the variance of the second-differences of the solution simultaneously with the fulfilment of the least-squares criterion. Such a procedure was first used by Phillips(1962). However, the solution thus obtained is still unsatisfactory since it usually does not conform to our a priori information. When we seek the brightness distribution of an object, the most frequent violation of our prior knowledge is that of positiveness. This motivated us to develop an Optimum Deconvolution Method (ODM) which constrains the solution to satisfy prior knowledge while retaining the features of least-squares and smoothness criteria.