Time series analysis of fluctuations of Ca II H and K chromospheric emission has provided us with much information concerning stellar activity. On all timescales, events which parallel solar behavior can be observed: activity cycles, on timescales of years; rotation of stars and evolution of active areas on timescales of days to weeks; flare-like phenomena on timescales as short as minutes.
We expect that the analogues of solar activity exist on other stars . By studying stellar counterparts to solar activity, we can hope to investigate the physical parameters which are thought to influence chromospheric and coronal activity. The stellar surfaces are usually spatially unresolvable; it is thus difficult to measure directly either small-scale surface inhomogeneities or the associated magnetic fields expected from spatially restricted areas.
On the Sun, however, areas with strong surface magnetic fields show intense chromospheric Ca II H and K emission (Babcock and Babcock 1955; Skumanich et al 1975). Although indirect, the Ca II H and K features are good indicators of stellar magnetic activity. A major advantage of the Ca II features is their accessibility to ground-based observatories. Long-term synoptic programs are in progress to monitor stellar chromospheric activity, and this paper will highlight ongoing work at Mt. Wilson. Monitoring variations of Ca II H and K chromospheric emission over different timescales can reveal different physical phenomena: (1) Long-term (years) variations corresponding to stellar activity cycles; (2) intermediate term (days-months) variations indicating rotation or evolution of stellar active areas; (3) short-term (minutes-hours) variations resulting from impulsive and flare-like phenomena.