Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T02:15:10.488Z Has data issue: false hasContentIssue false

White Dwarf Models of Supernovae and Cataclysmic Variables

Published online by Cambridge University Press:  12 April 2016

K. Nomoto
Affiliation:
Physics Department, Brookhaven National Laboratory; on leave from the Department of Earth Science and Astronomy, University of Tokyo, Japan
M. Hashimoto
Affiliation:
Physics Department, Brookhaven National Laboratory; on leave from the Department of Earth Science and Astronomy, University of Tokyo, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e, composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period X-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae.

Type
V. Nova and Dwarf Nova Outbursts
Copyright
Copyright © Reidel 1987

References

Begelman, M.C., and Sarazin, C.L. 1986, Ap. J. (Letters), 302, L59.Google Scholar
Branch, D., and Doggett, J.B. 1985, A. J., 270, 2218.Google Scholar
Branch, D., Doggett, J.B., Nomoto, K. and Thielemann, F.-K. 1985, Ap. J., 294, 619.Google Scholar
Branch, D., and Nomoto, K. 1986, Astr. Ap., in press.Google Scholar
Branch, D., and Venkatakrishna, K.L. 1986 Ap. J. (Letters), 306, L21.Google Scholar
Canal, R., Isern, J., and Labay, J. 1980, Ap. J. (Letters), 241, L33.Google Scholar
Chevalier, R.A. 1984, Ap. J. (Letters), 285, L63.Google Scholar
Delbourgo-Salvador, P., Mochkovitch, , and Vangioni-Flam, E. 1985, in Recent Results on Cataclysmic Variables (ESA SP-236), p. 229. Google Scholar
Finzi, A., and Wolf, R.A. 1967, Ap. J., 150, 115.Google Scholar
Fujimoto, M.Y., and Taam, R.E. 1982, Ap. J., 260, 249.CrossRefGoogle Scholar
Fujimoto, M.Y., and Sugimoto, D 1982, Ap. J., 257, 291.CrossRefGoogle Scholar
Gaskell, C.M., Cappellaro, E., Dinerste in, H., Garnett, D., Harkness, R.P., and Wheeler, J.C. 1986, Ap. J. (Letters), 306, L77.Google Scholar
Gehrz, R.D., Grasdalen, G.L., and Hackwell, J.A. 1985, Ap. J. (Letters), 298, L47.CrossRefGoogle Scholar
Habets, G.M.H.J. 1985, Ph.D. Thesis, University of Amsterdam.Google Scholar
Habets, G.M.H.J. 1986, Astr. Ap., submitted.Google Scholar
Hashimoto, M., and Nomoto, K. 1986, in preparation.Google Scholar
Hashimoto, M., Nomoto, K., Arai, K., and Kaminisi, K. 1986, Ap. J., 307, 687.Google Scholar
Iben, I. Jr. 1981, Ap. J., 243, 987.CrossRefGoogle Scholar
Iben, I. Jr., Nomoto, K., Tornambè, A., and Tutukov, A.V. 1986, Ap. J., submitted.Google Scholar
Iben, I. Jr., and Tutukov, A.V. 1984, Ap. J. Suppl., 54, 335. Google Scholar
Iben, I. Jr. 1986, Ap. J., submitted.Google Scholar
Isern, J., Labay, J., Hernanz, M., and Canal, R. 1983, Ap. J., 273, 320.Google Scholar
Isern, J., Labay, J., and Canal, R. 1984, Nature, 309, 431.Google Scholar
Ivanova, L.N., Imshennik, V.S., and Chechetkin, V.M. 1974, Ap. Space Sci., 31, 497.CrossRefGoogle Scholar
Kawai, Y., Saio, H., and Nomoto, K. 1986, Ap. J., submitted.Google Scholar
Law, W.Y., and Ritter, H. 1983, Astr. Ap., 123, 33.Google Scholar
MacDonald, J. 1983, Ap. J., 267, 732.CrossRefGoogle Scholar
MacDonald, J. 1984, Ap. J., 283, 241.Google Scholar
Miyaji, S., Nomoto, K., Yokoi, K., and Sugimoto, D. 1980, Pub. Asir. Soc. Japan, 32, 303 Google Scholar
Nariai, K., and Nomoto, K. in IAU Colloquium 53, White Dwarfs and Variable Degenerate Stars, ed. Van Horn, H.M. and Weidemann, V. (Rochester: Univ. of Rochester), p. 525.Google Scholar
Nomoto, K. 1980, in Type I Supernovae, ed. Wheeler, J. C. (Austin: University of Texas), p. 164.Google Scholar
Nomoto, K. 1981, in IAU Symposium 93, Fundamental Problems in the Theory of Stellar Evolution, ed. Sugimoto, D. et al. (Dordrecht: Reidel), p. 295.Google Scholar
Nomoto, K. 1982a, Ap. J., 253, 798.Google Scholar
Nomoto, K. 1982b, Ap. J., 257, 780.Google Scholar
Nomoto, K. 1984a, Ap. J., 277, 791.Google Scholar
Nomoto, K. 1984b, in Problems of Collapse and Numerical Relativity, ed. Bancel, D. and Signore, M. (Dordrecht: Reidel), p.89.Google Scholar
Nomoto, K. 1986a, Ann. N Y Acad. Sci., 470, 294.Google Scholar
Nomoto, K. 1986b, in Proceedings of VIth Moriond Astrophysics Meeting: Accretion Processes in Astrophysics, in press.Google Scholar
Nomoto, K. 1986c, in IAU Symposium 125, The Origin and Evolution of Neutron Stars, ed. Helfand, D.J. and Huang, J.H. (Dordrecht: Reidel), in press.Google Scholar
Nomoto, K., and Hashimoto, M. 1986, Prog. Part. Nuci. Phys., 18, in press.Google Scholar
Nomoto, K., Hashimoto, M., Iben, I. Jr., and Tornambè, A. 1986, in preparation.Google Scholar
Nomoto, K., and Iben, I. Jr. 1985, Ap. J., 297, 531.Google Scholar
Nomoto, K., Miyaji, S., Yokoi, K., and Sugimoto, D. 1979, in IAU Colloquium 53, White Dwarfs and Variable Degenerate Stars, ed. Van Horn, H.M. and Weidemann, V. (Rochester: Univ. of Rochester), p. 56.Google Scholar
Nomoto, K., and Sugimoto, D. 1977, Pub. Astr. Soc. Japan, 29, 765.Google Scholar
Nomoto, K., Thielemann, F.K., and Yokoi, K. 1984, Ap. J., 286, 644.Google Scholar
Saio, H., and Nomoto, K. 1985, Astr. Ap., 150, L21.Google Scholar
Saio, H. 1986, in preparation.Google Scholar
Savonije, G.J., de Kool, M., and van den Heuvel, E.P.J. 1986, Astr. Ap., 155, 51.Google Scholar
Sramek, R.A., Panagia, N., and Weiler, K.W. 1984, Ap. J. (Letters), 285, L59.Google Scholar
Starrfield, S., Sparks, W.M., and Truran, J.W. 1986, Ap. J. (Letters), 303, L5.Google Scholar
Taam, R.E. 1980, Ap. J., 237, 142.Google Scholar
Taam, R.E., and van den Heuvel, E.P.J. 1986, Ap. J., 305, 235.Google Scholar
Thielemann, F.-K., Nomoto, K., and Yokoi, K. 1986, Astr. Ap., 158, 17.Google Scholar
Tornambè, A., and Matteucci, F. 1986, M.N.R.A.S., in press.Google Scholar
Truran, J.W., and Livio, M. 1986, Ap. J., 308, in press.Google Scholar
van den Heuvel, E.P.J. 1984, J. Ap. Astr., 5, 209.Google Scholar
Webbink, R. 1984, Ap. J., 277, 355.Google Scholar
Webbink, R.F. Rappaport, S., and Savonije, G.J. 1983, Ap. J., 270, 678.Google Scholar
Wheeler, J.C., and Harkness, R. 1986, in Distances to Galaxies and Deviation from the Hubble Flow, ed. Madore, B.M. and Tully, R.B. (Dordrecht: Reidel).Google Scholar
Wheeler, J.C., and Levreault, R. 1985, Ap. J. (Letters), 294, L17.Google Scholar
Williams, R.E. et al. 1985, M.N.R.A.S., 212, 753.Google Scholar
Woosley, S.E., Axelrod, R.S., and Weaver, T.A. 1984, in Stellar Nucleosynthesis, ed. Chiosi, C. and Renzini, A., (Dordrecht: Reidel), p. 263.Google Scholar
Woosley, S.E., Taam, R.E., and Weaver, T.A. 1986, Ap. J., 301, 601.Google Scholar
Woosley, S.E., and Weaver, T.A. 1986a, in Nucleosynthesis and Its Implications for Nuclear and Particle Physics, ed. Audouze, J. and van Thuan, T. (Dordrecht: Reidel).Google Scholar
Woosley, S.E. 1986b, Ann. Rev. Astr. Ap., in press.Google Scholar