Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:17:22.142Z Has data issue: false hasContentIssue false

Wave Transport in Stratified, Rotating Fluids

Published online by Cambridge University Press:  15 February 2018

M. E. McIntyre*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Momentum and energy transport by buoyancy-Coriolis waves is illustrated by means of a simple model example. The need for careful consideration of a complete problem for mean-flow evolution is emphasised, especially when moving media are involved. Then a recent generalisation of the wave-action and pseudomomentum concepts is introduced, and used to exhibit in a very general way the roles of wave dissipation, forcing, or transience in the mean flow problem, for a certain class of ‘nearly-unidirectional’ mean flows. This class includes differentially-rotating stellar interiors, which could well be systematically changed by wave transport of angular momentum. Similar results hold for MHD and self-gravitating fluids. Finally the physical distinction between momentum and pseudomomentum is discussed.

Type
VIII. Waves
Copyright
Copyright © 1976

References

1. Lindzen, R.S. 1973 Boundary-layer Meteorol. 438, 327-43Google Scholar
2. Holton, J.R. 1975 The dynamic meteorology of the stratosphere and mesosphere. Boston, Amer.Met. Soc., 218pp.Google Scholar
3. Fels, S.B. & Lindzen, R.S. 1974 Geophys.Fluid Dyn. 638, 149-91Google Scholar
4. Plumb, R.A. 1975 Q.J.Roy.Meteorol.Soc. 10138, 763-76Google Scholar
5. Spiegel, E.A., Gough, D.O., personal communicationGoogle Scholar
6. E.g. Sakurai, T. 1976 Astrophys.& Space Sci. 4138, 1525 CrossRefGoogle Scholar
7. Holton, J.R. & Mass, C. 1976 J.Atmos.Sci. 3338, 2218-25Google Scholar
8. E.g. Grimshaw, R. 1975 J.Atmos.Sci. 3238, 1779-93Google Scholar
9. Eliassen, A. 1952 Astrophysica Norvegica 538, 1960 Google Scholar
10. Phillips, N.A. 1954 Tellus 638, 273-86Google Scholar
ll. Matsuno, T. 1971 J.Atmos.Sci. 2838, 1479-94Google Scholar
12. Uryu, M. 1974 J.Meteorol.Soc.Japan 5238, 481-90Google Scholar
13. Grimshaw, R. 1975 J.Fluid Mech. 7138, 497512 Google Scholar
14. Landau, L.D. & Lifshitz, E.M. 1975 The classical theory of fields, 4th English edition. Pergamon, 402 pp. See also Dougherty,J.P. 1970 J. Plasma Phys. 4, 761-85Google Scholar
15. Eckart, C. 1963 Phys.Fluids 638, 1037-41Google Scholar
16. Hayes, W.D. 1970 Proc.Roy.Soc.A 32038, 187208 Google Scholar
17. Dewar, R.L. 1970 Phys.Fluids 1338, 2710-20Google Scholar
18. Bretherton, F.P. 1971 Lectures in Appl. Math. 1338, 61102 (Amer.Math.Soc.)Google Scholar
19. Eliassen, A. & Palm, E. 1961 Geofys.Publ., 2238#3, 123 Google Scholar
20. Charney, J.G. & Drazin, P.G. 1961 J.Geophys.Res. 6638, 83109 Google Scholar
21. Moffatt, H.K. 1977 Magnetic field generation. Cambridge Univ.Press (to appear)Google Scholar
22. Andrews, D.G. & McIntyre, M.E. 1977 Submitted to J.Fluid Mech.Google Scholar
23. Andrews, D.G. & McIntyre, M.E. 1976 J.Atmos.Sci. 3338, 2031-48Google Scholar
24. Boyd, J. 1976 J.Atmos.Sci. 3338, 2285-91Google Scholar
25. Bretherton, F.P. 1977 Submitted to J.Fluid Mech.Google Scholar
26. Bretherton, F.P. 1969 Q.J.Roy.Meteorol.Soc. 95, 213-43Google Scholar
27. Lorenz, E.N. 1955 Tellus 738, 157-67Google Scholar
28. Bretherton, F.P. & Garrett, C.J.R. 1968 Proc.Roy.Soc.A 30238, 529-54Google Scholar
29. Whitham, G.B. 1974 Linear and nonlinear waves. Wiley.Google Scholar
30. Bretherton, F.P. 1970 J.Fluid Mech 4438, 1931 Google Scholar
31. Andrews, D.G., personal communicationGoogle Scholar
32. Andrews, D.G. & McIntyre, M.E. 1977 To appear in J.Atmos.Sci.Google Scholar
33. Eliassen, A. 1968 Geofys.Publ. 2738#6, 115 Google Scholar
34. Dickinson, R.E. 1969 J.Atmos.Sci. 2638, 7381 Google Scholar
35. Uryu, M. 1973 J.Meteorol.Soc.Japan 5138, 8692 Google Scholar
36. Rayleigh, Lord 1905 Phil.Mag. 1038, 364-74. (Sci.Papers,5, 262-71)Google Scholar
37. Brillouin, L. 1925 Annales de Physique 438, 528-86Google Scholar
38. Peierls, R. 1976 Proc.Roy.Soc.A 34738, 475-91Google Scholar
39. Gordon, J.P. 1973 Phys.Rev.A 838, 1421 Google Scholar
40. McIntyre, M.E. 1973 J.Fluid Mech 6038, 801-11Google Scholar
41. Robinson, F.N.H. 1975 Phys.Reports (Sec.C.of Physics Letters) 1638, 314-54Google Scholar
42. Penfield, P. & Haus, H.A. 1966 Phys,Fluids 938, 11951204 Google Scholar
43. Brillouin, L. 1936 Revue d’Acoustique 538, 99111 Google Scholar
44. Rooney, J.A. & Nyborg, W.L. 1972 Amer.J.Phys. 4038, 1825-30Google Scholar