No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Judging from the poster that the Organizing Committee has selected to announce the celebration of Guido Munch Jubilee, one can easily conclude that the main characteristics of the process of star formation as emerged in recent years through the combined efforts of multiwavelengths studies of molecular clouds, were already known, here in Granada, several centuries ago to the masters who built and enriched the enigmatic palace of the Alhambra. As we can appreciate from a quick inspection of the picture, it is rather obvious to infer that stars are the byproduct of a quite complex series of phenomena, each connected to, and somewhat dependent on, the others. Also, stars do not form in isolation, but rather in clusters or associations, with a strong tendency for the largest ones, also the most massive ones, to sit in the middle of the distribution. Moreover, smaller and less massive stars outnumber their massive counterparts, apparently obeying a power-law distribution. Finally, but with the benefit of doubt, it appears that the idea that the whole process reflects an intrinsic fractal nature was also put forward at the time. With this background in mind, let us now turn to the new emerging aspects of the study of star formation.