Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T02:53:18.505Z Has data issue: false hasContentIssue false

Recent Progress in Analytical Modeling of the Relativistic Effects in the Lunar Motion

Published online by Cambridge University Press:  12 April 2016

Kenneth Nordtvedt
Affiliation:
Northwest Analysis Bozeman, Montana, USA
David Vokrouhlický
Affiliation:
Institute of Astronomy, Charles University Prague, Czech Republic

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lunar motion serves for a number of important tests of the relativity theory. Although the final quantitative results come out from the direct numerical treatment of the lunar laser ranging data, the analytical solutions yield important keys for understanding sensitivity of the lunar motion on diverse effects. In the last few years, important relativistic phenomena, notably the equivalence principle violation and the preferred direction effects, have been reexamined using detailed Hill-Brown type theories. Surprising amplification of the former effect, indicated also from the numerical tests, has been explained by intricate coupling with the tidal deformation of the lunar orbit. Similar treatment proved that the lunar motion hides potentially a high-quality test of the preferred frame effects. In both cases, fundamental resonances of the problem cause singular amplification of the effects for particular lunar-like orbits.

Type
Solar System Dynamics
Copyright
Copyright © Kluwer 1997

References

Brumberg, V.A. and Ivanova, T.V.: 1985, “Relativiste effects in the Earth-Moon dynamics”, Trans. Inst. Theor. Astron. 19, 3.Google Scholar
Damour, T. and Vokrouhlický, D.: 1996a, “Equivalence principle and the Moon”, Phys. Rev. D53, 4177.Google Scholar
Damour, T. and Vokrouhlický, D.: 1996b, “Testing for gravitationally preferred directions using the lunar orbit”, Phys. Rev. D53, 6740.Google Scholar
Damour, T., Soffel, M.H., and Xu, C.: 1991, “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D43, 3273.Google Scholar
Dickey, J.O., Bender, P., Faller, J., Newhall, XX, Ricklefs, R., Ries, J.C., Shelus, J., Veillet, C., Whipple, A., Wiant, J., Williams, J., and Yoder, C.: 1994, “Lunar laser ranging: A continuing legacy of the Apollo program”, Science 265, 482.CrossRefGoogle ScholarPubMed
Hénon, M.: 1969, “Numerical exploration of the restricted problem”, Astron. Astro- phys. 1, 224.Google Scholar
Lestrade, J.F. and Chapront-Touzé, M.: 1982, “Relativistic perturbations of the Moon in ELP2000”, Astron. Astrophys. 116, 75.Google Scholar
Müller, J., Nordtvedt, K., and Vokrouhlický, D.: 1996, “Improved constraint on the α1 PPN parameter from lunar motion”, Phys. Rev. D54, 5927.Google Scholar
Nordtvedt, K.: “Equivalence principle for massive bodies”, 1968a, Phys. Rev. 169, 1014; 1968b, Phys. Rev. 169, 1017; 1968c, Phys. Rev. 170, 1186.CrossRefGoogle Scholar
Nordtvedt, K.: 1973, “Post-Newtonian gravitational effects in lunar laser ranging”, Phys. Rev. D7, 2347.Google Scholar
Nordtvedt, K.: 1994, “Cosmic acceleration of the Earth and Moon by dark matter”, Astrophys. J. 437, 529.CrossRefGoogle Scholar
Nordtvedt, K.: 1995, “The relativistic orbit observables in lunar laser ranging”, Icarus 114, 51.CrossRefGoogle Scholar
Nordtvedt, K.: 1996a, “The isotropy of gravity from lunar laser ranging”, Class. Quantum Grav. 13, 1309.CrossRefGoogle Scholar
Nordtvedt, K.: 1996b, “On the geodetic precession of the lunar orbit”, Class. Quantum Grav., in press.CrossRefGoogle Scholar
Nordtvedt, K.: 1996c, “Reducing systematic errors in LLR and Viking radar ranging data”, in: Dark Matter in Cosmology, Quantum Measurements and Experimental Gravitation, XXXI Moriond Conference, in press.Google Scholar
Sitter, W.de: 1916, “On Einstein’s theory of gravitation and its astronomical consequences”, Mon. Not. R. Astron. Soc, 76, 699; 1916, Mon. Not. R. Astron. Soc. 77,155.CrossRefGoogle Scholar
Will, C.M.: 1993, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Will, C.M. and Nordtvedt, K.: 1972, “Conservation laws and preferred frames in relativistic gravity”, Astrophys. J. 177, 757.CrossRefGoogle Scholar
Williams, J.G., Newhall, XX, and Dickey, J.O.: 1996, “Relativity parameters determined from lunar laser ranging”, Phys. Rev. D53, 6730.Google Scholar