Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T10:46:16.283Z Has data issue: false hasContentIssue false

Kolmogorov Unstable Stellar Oscillations*

Published online by Cambridge University Press:  12 April 2016

J. Perdang*
Affiliation:
Institute of Astronomy, Cambridge, CB3 OHA, England Institut d'Astrophysique, Cointe-Ougrée, B-4200, Belgium†

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently high linear asymptotic modes have been excited.

Numerical analysis confirms the occurrence of this instability. It is found to show up already among the lowest order modes, although high surface amplitudes are then required (ǀδrǀ/R ~ 0.5 for an unstable fundamental mode – first harmonic coupling). On the basis of numerical evidence we conjecture that in the Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear frequency peaks spread out over the asymptotic range, and a strictly non-linear 1/f-noise type component close to the frequency origin.

It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that this instability might be operative among the solar oscillations.

Type
Research Article
Copyright
Copyright © Reidel 1983

Footnotes

**

Chercheur Qualifié FNRS, Belgium.

Permanent address.

*

Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.

References

Arnold, V. I.: 1963a, Russian Math. Surveys 18 (6), 85.CrossRefGoogle Scholar
Arnold, V. I.: 1963b, Russian Math. Surveys 18 (5), 9.Google Scholar
Arnold, V. I.: 1976, Méthodes Mathématiques de la Mécanique Classique, éd. Mir Moscow, App. 7.Google Scholar
Birkhoff, G. D.: 1927, Dynamical Systems, American Mathematical Society, Providence, Rhode Island (Revised edition by Moser, J., 1966).Google Scholar
Blacher, S. and Perdang, J.: 1981a, Physica 3D, 512.Google Scholar
Blacher, S. and Perdang, J.: 1981b, Monthly Notices Roy. Astron. Soc. 19, 109 P.CrossRefGoogle Scholar
Brown, T. M., Stebbins, R. T., and Hill, T. M.: 1978, Astrophys. 7. 223, 324.Google Scholar
Chirikov, B.: 1979, Physics Reports 52, 265.Google Scholar
Christensen-Dalsgaard, J. and Gough, D. O.: 1980, Nature 288, 544.Google Scholar
Demaret, J., Dzuba, V., and Perdang, J.: 1978, Astron. Astrophys. 70, 287.Google Scholar
Fermi, E., Pasta, J., and Ulam, S.: 1955, Los Alamos Scientific Laboratory Report LA-1940.Google Scholar
Ford, J.: 1961, J. Math. Phys. 2, 387.Google Scholar
Ford, J. and Lunsford, G. H.: 1971, Phys. Rev. Al, 59.Google Scholar
Ford, J., and Waters, J.: 1963, J. Math. Phys. 4, 1293.Google Scholar
Hénon, M. and Heiles, C.: 1964, Astron. J. 69, 73.Google Scholar
Hirooka, H. and Saitò, N.: 1969, J. Phys. Soc. Japan 26, 624.Google Scholar
Izrailev, F. M. and Chirikov, B. V.: 1966, Soviet Phys. Dokl. 11, 30.Google Scholar
Kolmogorov, A. N.: 1957, Théorie Genérale des Systèmes Dynamiques et Mécanique Classique’, Proc. Int. Congress of Math., Amsterdam (Appendix D in R. Abraham, 1967, Foundation of Mechanics, Benjamin, New York)Google Scholar
Ledoux, P. and Perdang, J.: 1980, Bull. Soc. Math. Belgique 32, 135.Google Scholar
Moser, J.: 1962, Nachr. der Akad. der Wissensch, in Göttingen Math.-Phys. Kl., 1.Google Scholar
Moser, J.: 1973, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press.Google Scholar
Nekhoroshev, N. N.: 1977, Russian Math. Surveys 32 (6), 1.Google Scholar
Noid, D. W., Koszykowski, M. L., and Marcus, R. A.: 1977, J. Chem. Phys. 67, 404.Google Scholar
Papaloizou, J. C. B.: 1973a, Monthly Notices Roy. Astron. Soc. 162, 143.Google Scholar
Papaloizou, J. C. B.: 1973b, Monthly Notices Roy. Astron. Soc. 162, 169.Google Scholar
Perdang, J.: 1981, Astrophys. Space Sci. 74, 149.Google Scholar
Perdang, J. and Blacher, S.: 1982a, Astron. Astrophys. 112, 35.Google Scholar
Perdang, J. and Blacher, S.: 1982b, in preparation.Google Scholar
Poincaré, H.: 1890, Acta Math. 13, 1.Google Scholar
Poincaré, H.: 1912, Rendic. Circ. Mat. Palermo 33, 375.Google Scholar
Powell, G. E. and Percival, I. C.: 1979, J. Phys. A.: Math. Gen. 12, 2053.Google Scholar
Rosseland, S.: 1949, The Pulsation Theory of Variable Stars, Clarendon Press, Oxford, Sections 4.3,4.4, 4.5; Chapter 7.Google Scholar
Siegel, C. L.: 1954, Math. Ann. 128, 144.Google Scholar
Simon, N.: 1972, Astron. Astrophys. 21, 45.Google Scholar
Walker, G. H. and Ford, J.: 1969, Phys. Rev. 188, 416.CrossRefGoogle Scholar
Woltjer, J.: 1935, Monthly Notices Roy. Astron. Soc. 95, 260.Google Scholar
Woltjer, J.: 1937, Bull. Astron. Inst. Netherlands 8, 193.Google Scholar
Woltjer, J.: 1943, Bull. Astron. Inst. Netherlands 9, 435.Google Scholar
Zaslavskii, G. M. and Chirikov, B. V.: 1971, Soviet Physics Uspekhi 14, 549.Google Scholar