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Abstract. We survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on 
the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars 
this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently 
high linear asymptotic modes have been excited. 

Numerical analysis confirms the occurrence of this instability. It is found to show up already among the 
lowest order modes, although high surface amplitudes are then required (\br\/R ~ 0.5 for an unstable 
fundamental mode - first harmonic coupling). On the basis of numerical evidence we conjecture that in the 
Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an 
equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum 
of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear 
frequency peaks spread out over the asymptotic range, and a strictly non-linear l//-noise type component 
close to the frequency origin. 

It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial 
stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that 
this instability might be operative among the solar oscillations. 

1. Motivation 

It has recently been observed that the SCLERA power spectra of solar oscillations 
(Brown etal, 1978) are not incompatible with the presence of highly non-linear 
turbulent-like motions at the Sun's surface (Perdang, 1981; Blacher and Perdang, 
1981b). Since the relative radial amplitudes of the reported motions are extremely small 
(| br\ /R < 10 ~5) most solar theorists, invoking the principle that small causes have small 
effects, are tempted to discard the suggestion that the non-linear coupling among the 
solar linear modes might have any serious influence on the actual oscillations. However 
a trivial illustration pinpoints a way to invalidate this rule in the context of interacting 
oscillators. 

Take the coupled oscillator equations 

x + calx = eX{x,y), ,^ 

y + tojy = e Y(x, y), 

where X and Y are non-linear functions and £ is a small parameter, with initial 
conditions x = y = l,x = y = 0; suppose for instance X(x, y) = y3 + • • • . In a standard 
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perturbation scheme the first correction to the harmonic oscillator solution in x due to 
the contribution y3 is of order e/(co^ - a>y); therefore if a sufficiently sharp resonance 
between both linear frequencies takes place, then the perturbation procedure suggests 
that a finite correction can be produced even though the coupling parameter e is 
infinitesimal. By the same token, since butterfly effects typically characterise unstable 
situations, the above example makes it plausible that internal resonances in weakly 
coupled oscillators may trigger some instability. 

The main part of this paper is dedicated to a review of the rigorous mathematical 
information now available on the behaviour of non-linear Hamiltonian oscillators. 
Under special circumstances, among which the approximate internal resonances 
spotted above rank as necessary conditions, sinusoidal oscillations bifurcate towards 
a more irregular type of motion. In the available phase-space the latter occupy a zone 
of higher dimensionality*. This transition is referred to as the Kolmogorov instability. 

For exploratory reasons we analyse here the purely radial adiabatic stellar oscillations 
in the framework of this theory, the latter being trivially recast into a Hamiltonian form. 
Although the phenomenon of Kolmogorov unstable oscillations is far more likely to 
occur among non-radial stellar motions, our numerical experiments disclose that this 
instability can occur already in the radial case, and, perhaps rather unexpectedly, under 
favourable circumstances even among the lowest order radial modes. 

We illustrate that this instability reveals itself most easily in the power spectrum of 
the surface displacement of the star: While prior to the transition, in the 'regular' regime, 
the spectrum shows just a few peaks in all of our experiments, each peak transforms 
into an irregular band displaying a highly complex substructure when the instability sets 
in; studies of the same motion at several spectral resolutions show that the bands 
disclose a statistically hierarchical fine-structure; this confers the spectrum of Kolmo­
gorov unstable motions a noisy aspect. The time-behaviour of such motions lies in 
between regular, deterministic, and irregular, random or noisy variability, the degree of 
randomness being related to the width of the bands. 

In this paper no attempt has been made to apply our numerical experiments to specific 
stellar situations. We merely point out that since non-radial oscillations are most 
vulnerable by this instability, Kolmogorov unstable motions on the Sun's surface 
deserve serious investigation. A conclusive numerical approach of this question, 
allowing a meaningful comparison of theoretical power spectra with their observational 
counterparts requires a non-linear coupling formulation involving a few hundred linear 
modes. 

We wish to stress finally that while Hamiltonian oscillations are now reasonably well 
understood, there exists so far, to be best of our knowledge, no general theory of 
dissipative motions. The question then of how dissipation characteristically affects 
Kolmogorov unstable oscillations remains open. 

* Stellar vibrational instability gives rise to a similar change of dimensionality in phase-space: prior to the 
instability, the star's being in equilibrium shrinks the orbit to a point (O-dimensional) in phase-space; at the 
transition - a Hopf bifurcation in mathematical parlance - the point explodes into a closed curve 
(1-dimensional): the star is now periodically oscillating. 
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2. The Coupled Harmonic Oscillator-Approximation to Non-Linear Stellar 
Oscillations 

To generate a set of adiabatic oscillation equations of a star which lends itself to a 
discussion in the framework of point-mechanics we rely on the energy principle. The 
potential energy V of the star, made up of the sum of the gravitational and the internal 
energy, and the kinetic energy of the internal motions K, are given by the following 
expressions: 

V = dm m/r{m, i) + dm u(r(m, t), dr/dm), (2) 

K dm (dr(m, t)/dt)2 
(3) 

In these relations u denotes the specific internal energy which under local conservation 
of entropy (assumption of adiabatic motions) and mass becomes a function of the local 
radius r{m, t) and its derivative with respect to the mass variable. All other notations 
are standard. In this form the total energy allows us to fully describe the radial motions 
of a star in the neighbourhood of a state of minimum potential energy. To this end it 
suffices to apply the expansion procedure adopted in Demaret et al. (1978) in a slightly 
modified version. Since the eigenfunctions of the linear radial adiabatic oscillation 
problem of a star 

£„(m) = br„(m)/r{m), n = 1, 2 , . . . , (4) 

form a complete set, any radial displacement (satisfying physically reasonable 
smoothness conditions) can be expanded in the form 

r{m, t) = rE(m) 1 + X Um)qn{t) (5) 

where rE(m) denotes the local equilibrium radius and qn{t) represents a set of weights 
attached to the linear amplitude distributions. We require the eigenfunctions to obey the 
usual normalisation 

dm r(w)24(m*K/(m) = hi • (6) 

On substitution into Equations (2) and (3) we obtain for the total energy, if we set 

pn = dqjdt, n = 1, 2 , . . . (7) 

H{qn, p„) =VE + \'Z \pk\
2 + 5 1 u>lW\2 + — I Vf,)mqkq,qm + ••• 

k k 3 ! klm 

VE + H<2\q„, p„) + V^\qn) + (8) 
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The factor VE denotes the potential energy of the equilibrium configuration. The 
coefficients cok are the frequencies of the linear oscillations. The expansion coefficients 
V$%, can be derived directly from the formulae given in Demaret e? a/. (1978). The formal 
expansion (8) can be interpreted as a Hamiltonian describing an infinite number of 
non-linearly coupled harmonic oscillators, of generalised positions q„ and momenta p„, 
n = 1,2,. . . . Since in any numerical application of this formalism we are bound to 
cut-off the expansion of the radius (5) at some finite number F of linear modes, we shall 
restrict our theoretical discussion to the latter situation. The Hamiltonian (8) then refers 
to the motion of F non-linearly coupled harmonic oscillators. Under the change of 
variables 

1n^£<ln, Pn-^£Pn, H ^ S 2H , ( 9 ) 

where e is a small book-keeping parameter measuring the order of magnitude of the 
amplitudes of the motion, or equivalenty the order of magnitude of the oscillation energy, 
we have 

H{qn, Pn) = H«\qn, p„) + sH^(qn) + • • • , (8') 

where H(2) is the Hamiltonian of the uncoupled linear oscillations; the terms involving 
the small parameter e describe the non-linear coupling, each Hik\ k = 3,4,... being a 
homogeneous polynomial of degree k in the coordinates qn. The equilibrium potential 
VE is independent of the qn, p„; it leads to no contribution to the motion we investigate 
and has therefore been discarded. 

The Hamiltonian formalism of stellar oscillations dates back to Woltjer (1935, 1937, 
1943; cf. also Rosseland, 1949). This author was particularly concerned with the 
determination of analytically expressible corrections to the harmonic oscillator solutions. 
In the next section we shall see that such procedures cease to be justified mathematically 
when certain resonance conditions in the harmonic oscillators are fulfilled. 

3. Application of PBSKAM-Theory to Stellar Oscillations 

We survey in this section a few mathematical results of point-mechanics which prove 
to be directly relevant to the stellar oscillation problem. These developments originated 
with Poincare (P) in the last century, were continued by Birkhoff(B) and Siegel (S), and 
culminated in a celebrated theorem first formulated by Kolmogorov (K) and later proved 
by Arnold (A) and Moser (M) (the KAM theorem). 

Consider first the Hamiltonian obtained if e = 0 in Equation (8'). Introduce a new 
set of canonical variables q>n, Jn,n= 1,2,... ,F, referred to as angle-action variables, 
defined as follows: 

u>l„/2qn = -(2Jn)
l/2 sin<p„ , ^ 

^l/2P„= + (2 J„)1/2 cos <p„, n=\,2,...,F. 

In terms of the new variables the Hamiltonian depends on the actions J„ alone: 

H = F(Jn). (11) 
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The corresponding Hamiltonian equations can be integrated explicitly: 

J„{t) = J°n , <p„(t) =cp°n + Qj (modIn), ^ 

Qn^8H/8Jn, n=l,2,...,F, 

where J° and (p° are the initial conditions. Since the <p° are angles, our convention is 
to define the latter in 0 < cpn < 2n; the notation cp (mod27r) indicates that any value of 
(p originally not in the range 0 to 2n is recast into that interval by adding or subtracting 
a multiple of 2n. In the special case just envisaged H = H(2) and Qn = con (independent 
of Jn). More generally, given an arbitrary Hamiltonian H(q„, pn), it is said to be 
integrable if and only if a canonical transformation to angle-action variables exists such 
that the transformed Hamiltonian depends on the actions alone. For an integrable 
system the general solution can explicitly be written down (Equation (11')); expressed 
in the original variables qn, pn the motion is then given as an .F-uple Fourier series 

«»W = I <i2...kF «pi(fc, O, + k2Q2 + • • • + kFQF)t (11") 
k1k2..-k/r 

and a similar expression for pn(t), n = 1,2,... ,F, with kt, k2, • • • = 0, + 1, ± 2 , . . . . 
Under conditions of analyticity of the Hamiltonian the expansion coefficients obey 

K L . J ^A exp -B |*| , \k\ = X \k,\ , (11'") 
/ = 1 

where A and B are positive constants independent of the kt. Functions of type (11"), 
(11'") are known as quasi-periodic functions, and the corresponding motion is said to 
be a quasi-periodic motion. 

Since total energy E is conserved during the motion, we represent the latter in terms 
of its angle-action variables (11') on the IF - 1-dimensional energy 'surface', which we 
parametrise by the coordinates (pl,q>2,..., cpF, Ju J2,..., JF-\- For a 2-oscillator 
system (F = 2) we have illustrated the motion of an integrable Hamiltonian system in 
Figure 1. The energy 'surface' is represented by the box 0 < <p, < 2n, 0 < (p2 < 2n, 
0 < J, < J™, J™ being the maximum action Jx compatible with the value of the energy. 
For given initial conditions (p°u (p2, J°, J% (= J2(J\> E))> the orbit is confined to the 
square ABCD at the position J, = J° parallel to the angle plane (pu<p2; the trajectory 
is a straight line with the property that each time it touches an edge and disappears, it 
reappears on the opposite edge with same slope, at the projection of the point of 
disappearance. Such a square with opposite edges being identified (AB = DC and 
AD = BC) has the geometrical structure of a doughnut (cf. Figure 1); therefore it is 
referred to as a 2-dimensional torus. In the general case of an integrable Hamiltonian 
system of F degrees of freedom, the motion (11') is likewise said to evolve on an 
F-dimensional torus of the IF - 1-dimensional energy manifold. 

If the frequencies Qn, n= 1, 2 , . . . , F, are rationally dependent, or resonant, of order 
N, i.e. if a set of integers kuk2,... ,kF exists such that 

F 

X knQn = Q with \k\=N, (12) 
n= 1 
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Fig. 1. The energy box H(q>u <p2, Ju J2) = E = c"\ 0<<p,<2;r , 0 < tp2 < In, 0 < J, < J f for an 
integrable system of 2 degrees of freedom; the orbit a, P is carried by the square ABCD (equivalent to 

a torus, cf. bottom of figure). 

then the orbit in the energy manifold is closed, so that the motion is periodic; the 
motion-carrying torus is then said to be a resonant torus. If for no set of integers 
kuk2,..., kF, whatever N, relation (12) can be satisfied, then the orbit will eventually 
go through any region, chosen as small as we like, on the torus; such an orbit covers 
the whole torus. 

For integrable Hamiltonian systems the energy manifold is stratified into invariant 
tori: Any point of this manifold belongs to one and only one torus. 

Integrability is not automatically shared by all Hamiltonian systems. This point was 
recognised by Poincare (1890) who proved that the 3-body problem of celestial 
mechanics is precisely not integrable. Poincare also seems to have been aware that 
integrability is in fact an exceptional property of Hamiltonian systems. In geometric 
terms the very existence of non-integrable Hamiltonian systems means that there are 
orbits which do not lie on tori; equivalently there are motions which do not admit of 
multiple Fourier expansions of type (11"), (11'")-
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A refinement of Poincare's result is due to Birkhoff (1927) who proved the following 
theorem: 

If the Hamiltonian is given by a formal power series in £ (Equation (8')), with the 
frequencies a>„ entering the harmonic part H(2) being rationally independent, then a 
formal canonical transformation exists, qn, p„ -> Qn, P„, n = 1,2,... ,F, such that 

H = F(J„) = £ a>kJk + \ X (MklJkJ, + ••• (13) 
k kl 

is a formal power series in the variables Jn defined by 

unJn = k{QW„ + P2
n), n=l,2,...,F. (13') 

The proof as given in Arnold (1963a, b) consists in the explicit construction of a 
sequence of canonical transformations 

<7„> P„ -+<l'n,Pn generator: S(q„, p'„), 

q'n,P'n^Q'n,P'n S'{q'n, P'„') , (14) 

The generators of these transformations are determined by requiring that S{q,„ p'„) 
eliminates the non-integrable contribution of order e in the formal series of the 
Hamiltonian, S'{q'n,p'^) produces a vanishing order s2 contribution, etc. These 
generators are sought in the form of multiple Fourier expansions; the Fourier 
coefficients then involve denominators £ ^ = , knco„, k„ = 0, ±1 , ±2,... (\k\ ^ 0). One 
finds that the generator S is formally defined if no resonances of order < 4 occur among 
the linear frequencies; this generator then reduces the full Hamiltonian H 
(Equation (8')) to the form: 

+ 0(e2) = H0(J„) + 0(e2), (15) H(q„, p„) Wjn + 2 Z WnkJ„Jk 
n,k 

where the 0(e2) contribution does not depend on the action variables alone. To 
eliminate higher order non-integrable components in the formal series (15) higher order 
resonances are to be excluded as well. 

The construction of this sequence of generators breaks down once the frequencies of 
the harmonic part H(2) are resonant to some order N. This proves that resonances are 
responsible for destroying the integrability of the full Hamiltonian (Equation (8')). But 
since for any set of frequencies co,, a>2,... ,a>F one can always find a set of integers 
k*x,kt,..., k*F, k* = 0, + 1, ± 2 , . . . jit*| # 0, such that |£^= , k*to„\ < r\, t] being any 
preassigned precision, it becomes doubtful whether the series of generators and 
therefore also the formal series (13) are ever convergent. 

The question of convergence or divergence was settled by Siegel (1954) who proved 
that the formal series (13) is generically divergent. If we choose at random a 
Hamiltonian among the class of Hamiltonians given by the series expansion (8') with 
coefficients of the polynomials H(k) in some finite interval, say ( - 1 , +1), then the 
probability of hitting an integrable Hamiltonian is zero. The typical property of a 
Hamiltonian is to be non-integrable. 
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This conclusion directly pertains to the weakly non-linear stellar oscillations: For 
general stellar models we have no reason to expect the oscillation Hamiltonian 
(Equation (8.8')) to possess the atypical property of integrability. Therefore solutions 
of the stellar oscillations in the form of Fourier type expansions (11") as assumed in 
Woltjer's procedure, and more recently in the iterative technique adopted by Simon 
(1972), are not justified a priori in the presence of multi-mode coupling. 

Non-integrability means that not all motions are carried by tori. What is physically 
relevant, however, is to know how frequent the orbits on tori are as compared to the 
totality of trajectories of a non-integrable Hamiltonian system, or more precisely to have 
information on the volume occupied by the regular, quasi-periodic motions in 
comparison with the whole volume of the energy manifold. A partial answer to this 
question is provided by the notorious KAM theorem (Kolmogorov, 1957): 

If a Hamiltonian of a system of F degrees of freedom is given in the form 

H(cpn, Jn, e) = H0(Jn) + eHfa, Jn, e), (16) 

where 
(1) His real analytic in all of its arguments, for 0 < s < s0, for J„ denned in some open 

region J of the F-dimensional action space, and for the angles 0 < q>„ < 2%, 
n = 1, 2 , . . . , F, as well as periodic in the latter (of period 2n); 

(2) let Jn= / ° , n = 1,2,... ,F, in J, characterise an invariant torus of the non-
perturbed Hamiltonian H0 such that the frequencies 

Qn(JJ = dH0/8J„ at Jn=J°n, n=l,2,...,F (17) 

obey the non-quasi-resonance condition 
F 

X knQn >c\k\~a for any set of integers k„ = 0, ± 1, ± 2 , . . . (18) 

(1*1*0) 

for some positive constants c and a, as well as the non-degeneracy condition 

dtm(d2Ho/BJm8JJ^0 at Jn = J°. (18') 

Then, provided that £0 is sufficiently small: 
(1) there exists a deformed invariant torus 

J„(t)=J° + sA(<p°Me), 

with <p and A real analytic functions of their arguments and periodic in the <p°(0, i.e. 
the angles of the non-perturbed orbit; 

(2) if r is the open region in phase-space over which hypothesis (1) holds, and K the 
region filled out by the regular solutions (19), then K is closed and nowhere dense; 
moreover it covers most of T. 

The latter stipulation means that the volume of the zone T - K occupied by non-
quasiperiodic solutions can be made as small as we like if the coupling £ is small enough. 
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Region K is referred to as the Kolmogorov set. The first full proof of this theorem was 
given by Arnold (1963a). A perhaps more intuitive proof based on a procedure going 
back to Poincare (1912), namely the method of the surface of section, or of area 
preserving Poincare mappings, is due to Moser (1962, cf. also 1973). In essence, and 
for F = 2, this procedure amounts to studying the sequence of successive intersections 
of the orbit in the 3-dimensional energy manifold in the coordinate basis quq2, P2, by 
the plane (surface of section) qx = 0 with p1 > 0. Denote by q2'\ p2° the /th intersection 
point of the orbit with the surface of section; the transformation that carries q(

2
J), p2

n 

into q2
J + 1}, p2

J + 1}, j = 1, 2 , . . . is the Poincare map. A motion on a torus (cf. Figure 1) 
shows up in the surface of section as a sequence of points all distributed along a closed 
curve (which can degenerate into a point). A closed curve being topologically equivalent 
to a circle, the simplest Poincare map that simulates all topological features of any 
quasi-periodic Hamiltonian solution is the 'twist map' 

_ ( i + D _ -(/) 

(20) 
q,V+V = <?«"> +fl(r«>) , 

where cp, r are polar coordinates of the intersection points q2, p2 in the surface of section; 
the twist map transforms the circle of radius r = ru\ i = 1,2, into itself. Any conceivable 
slight perturbation of the Hamiltonian deforms the corresponding Poincare map (20) 
as follows: 

r«+1> = r<'> + eR(ri'\ <p(/)), 

(p('+1) = <p<o + fi(r(0) + S(p(ra\ (p(0). 

(The Hamiltonian character of the motion requires area conservation of the map (20'), 
r2 dr d(p = cst, so that the functions R and (j> are not independent.) Moser proved 
that if 

d f l / d r # 0 (21) 
and 

\nQ - m2n\ >c \n\_a for any set of integers n, m (22) 

for some positive numbers c and a, then the disturbance to the twist map generates again 
a closed curve in the surface of section that remains close to the original circle for £ 
sufficiently small. Note that conditions (21) and (22) duplicate the non-degeneracy and 
non-quasi-resonance requirements. 

It was already known to Poincare and Birkhoff that the twist map is unstable under 
slight perturbations (20') once Q = (m/n)2n; under those conditions the original 
invariant circle is blown up, an even number of points on it remaining however fixed. 
The latter are alternatively stable and unstable: A stable fixed point has the property 
that the map (20') carries all points close to it into points that remain close to it; unstable 
fixed points of the Poincare map have neighbouring points in the surface of section that 
do not stay close to those points under the transformation (20'). An unstable fixed point 
either (a) has the sequence of successive image points of any point in its neighbourhood 
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lying on a closed curve, or (b) there are points around it which under the iterated map 
(20') fill out an area in the surface of section. Alternative (a) occurs if the perturbed twist 
map simulates an integrable Hamiltonian system; it produces an explosion of the 
original torus into a series of second generation tori. Alternative (b) is the typical case; 
it tells us that the resonant tori, which densely cover the energy manifold, acquire a 
certain thickness along the action axes: these tori, of dimension F, explode into 
configurations of higher dimensionality <2F - 1. 

The motions carried by the Kolmogorov set K are quasi-periodic (Equations (11'), 
(11")). The orbits lying outside K are 'Kolmogorov unstable' in Chirikov's terminology 
(Izrailev and Chirikov, 1966), or 'stochastic' (Zaslavskii and Chirikov, 1972), or 
'chaotic'. So far the precise mathematical characteristics of these motions are not yet 
known. 

We observe that for a system of F = 2 coupled oscillators at low £ viewed in the energy 
box of Figure 1, any exploded torus is necessarily sandwiched between two invariant 
tori of the Kolmogorov set. Therefore, the actions of Kolmogorov unstable motions are 
confined to narrow intervals (for F = 2). This suggests that such motions still bear some 
resemblance with quasi-periodic motions. 

If F> 2, an F-torus of the 2F- 1-energy manifold no longer cuts the latter into two 
disconnected bits; therefore, the complementary set of the Kolmogorov tori i.e. the zone 
carrying the Kolmogorov unstable motions, can now become connected. The actions 
are then allowed to drift through the whole energy manifold. This phenomenon is known 
as the Arnold diffusion. Nekhoroshev (1977) proved that under special 'steepness' 
requirements of the non-perturbed Hamiltonian (Equation (16)), the actions Jn(t) obey 

Unit)-Jn\<£b i f 0<t<T = e 1 e x p ( e - a ) , (23) 

n = 1,2,... ,F, 

where a,b> 0 depend on the non-perturbed Hamiltonian, and J° represents the action 
of the solution of the integrable, non-perturbed Hamiltonian H0. (The steepness 
hypothesis generalizes the stability condition \dH0/dj\ > 0 in a system with one degree 
of freedom). 

We now adapt these results to the problem of stellar oscillations (Equation (8')). First 
observe that if we introduce action-angle variables defined by Equation (10) into the 
oscillation Hamiltonian, then the unperturbed part becomes 

H(2\q„, p„) = F(J„) = X Q)kJk, (24) 
* - I 

with co„ = Q„ (Equation (11')). This integrable Hamiltonian violates the non-
degeneracy requirement (18'), so that we cannot just use the harmonic oscillator 
approximation as the unperturbed system. However, we have seen in the analysis of 
Birkhoff s theorem that a canonical transformation exists reducing our stellar oscillation 
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Hamiltonian to the form (15); the terms between square brackets representing again an 
integrable Hamiltonian are now regarded as the non-perturbed Hamiltonian. The 
condition securing the existence of this transformation is given by 

X k„co„ # 0 , 0 < \k\ = X |*| < 4 . (25) 
n = 1 n = \ 

For arbitrary generic stellar models we can assume that dtma^ ^ 0, so that the 
non-degeneracy requirement (18') is now satisfied. Moreover, provided that the non-
quasi-resonance condition (18) is obeyed, we fulfil the hypotheses of the KAM theorem. 

The latter requirement demands that even approximate resonances 

I k„a>„ * 0 (20) 
n= 1 

have to be excluded among the linear oscillations. The precision to which this equality 
has to be fulfilled depends on the expansion parameter e: small e values demand a high 
accuracy in order to violate the KAM conditions (cf. next section). 

We discuss now the possibility of resonances among radial stellar modes. In the first 
place, if we concentrate on the sufficiently low frequency part of the linear spectrum, the 
non-quasi-resonance condition is not violated in generic models and at a sufficiently low 
level of non-linearity e. Exceptions occur in atypical models, constructed through an ad 
hoc selection of the model parameters to generate resonances: for instance among 
polytropes, by adjusting the index n it is possible to produce low order resonances in 
the low-frequency spectrum (cf. Simon, 1972). Such models have an almost zero 
probability to occur in reality. Therefore we have the following property: 

(A) In a generic stellar model, if the radial modes of sufficiently low order are 
non-linearly coupled, and the oscillation energy is low enough, then most of the motions 
of this non-linear stellar oscillator remain close to the oscillations of the linear modes 
(KAM secures the closeness of the solutions to the motions of a non-linear integrable 
oscillator described by the non-perturbed Hamiltonian H0 (Equation (15)); but for 
sufficiently small non-linearity s, or equivalently sufficiently small oscillation energy, the 
motion of the latter oscillator remains as close as we like to the linear oscillations). 

Consider next the sufficiently high asymptotic part of the linear spectrum. The linear 
frequencies in the asymptotic regime obey a representation formula 

(N^ oo): wN = NQa + Q0 + QJN + 0{\/N2), (27) 

where Qa, Q0, Qx,... are model constants. If coN, coN+ , are two successive asymptotic 
frequencies, and if we express frequencies in units coN = 1, we have 

<oN+ , - <oN = (1/A0 + 0(l/N2). (28) 

By choosing ./V large enough we have a resonance of order 2 to any preassigned degree 
of precision. This shows that we violate the non-quasi-resonance conditions of KAM 
in any stellar model, on condition that we couple non-linearly adjacent modes of the 
asymptotic spectrum. Therefore: 
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(B) In any stellar model, if we fix an oscillation energy (chosen sufficiently small), and 
if we couple non-linearly radial asymptotic modes of sufficiently high order N, we have 
no guarantee that the motion of this non-linear oscillator remains close to the linear 
harmonic oscillations of the uncoupled modes. 

4. Empirical Data on the Kolmogorov Instability 

The strict mathematical theory reviewed in the previous section does not answer the 
following questions: 

(1) What does a Kolmogorov unstable motion look like? 
(2) Under what conditions does the energy box carry a non-negligible fraction of 

Kolmogorov unstable tori? 
(3) How does the Kolmogorov instability influence the energy exchange among 

modes? 
These questions have been investigated by semi-analytical techniques and by direct 

numerical experiments. 
(1) It has been argued that since by definition such motions cannot be represented 

by multiple Fourier series (Equations (11"), (11'")), any phase-space coordinate 
<7«(0> Pn(f)> a n d therefore also any linear combination of the latter, must give rise to 
a highly structured power spectrum (Blacher and Perdang, 1981a). In fact, it has been 
found that power spectra of Kolmogorov unstable motions invariably have a complex 
structure (Noid etal, 1977; Powell and Percival, 1979); a quasi-periodic motion in 
contrast has a spectrum typically displaying just a few fine lines. A detailed analysis of 
the unstable motions of the Henon—Heiles coupled harmonic oscillators (F = 2) 
(Henon and Heiles, 1964) with a resonance col = co2 in the harmonic approximation 
shows that the power spectra typically display two conspicuous features (Blacher and 
Perdang, 1981a): a broad resonance band at frequency a>~ co] = co2, and a second 
lower broad band at the combination frequency co, - co2\ (origin). The very existence 
of the first band tells us that a pseudo-periodicity survives in the Kolmogorov unstable 
regime. The spread in this band shows that this periodicity is not well-defined: If one 
views the profile of the band as a probability distribution of frequencies, then the motion 
can randomly switch from one frequency in the band to another; this is precisely 
observed in the analysis of the time-behaviour of the phase coordinates (Blacher and 
Perdang, 1981b). The second band near the origin can be given a similar probabilistic 
interpretation: it confers the motion an irregular long time-scale variability which 
manifests itself as an irregular amplitude modulation of the short time-scale pseudo-
periodicity. 

These heuristic results picture a Kolmogorov unstable motion as a blend of a 
deterministic, regular, component (reminiscent of a linear mode), and a purely random, 
irregular component; the degree of randomness is measured by the band-widths of the 
power spectra. 

The appearance of a finite natural width of the frequency peaks under Kolmogorov 
instability is not surprising. It merely reflects the finite thickness of the exploded tori. 
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In fact, from Equation (17) we can say that each frequency Qk{Jn) of the 
integrable Hamiltonian H0 explores an interval AQk roughly given by 
AQk~ Xf=i \S2H0/dJkdJi\ lAJ/l on the exploded torus J„ ~ J° of thickness AJ„, 
n=l,2,...,F. 

We should mention also that the fractal dimension d of the (renormalised) bands of 
a power spectrum of Kolmogorov unstable motions obeys d> 1, while the power 
spectrum of regular motions has a dimension d = 1; for the Henon-Heiles unstable 
oscillations an approximate numerical technique devised to estimate this parameter 
(Perdang, 1981; Blacher and Perdang, 1981a) yields values in the range 1.25 < d < 1.5. 

(2) As regards the onset of an 'observable' Kolmogorov instability, i.e. the occurrence 
of Kolmogorov unstable motions over a fraction of phase-space of finite volume, it is 
found empirically that a mere violation of the KAM conditions is not sufficient to 
guarantee this phenomenon. The following empirical results are relevant in this 
connection. 

The notorious experiments by Henon and Heiles (1964) dealing with two harmonic 
oscillators of same frequency to, = a>2, coupled nonlinearly through the potential 
^3(91^2) = <7i<72 ~\QT. n a v e established that the transition towards (observable) 
Kolmogorov instability sets in abruptly, at some threshold energy ET; the latter in turn 
is a fraction (> 5) of the escape energy vc, i.e. the energy above which the equipotential 
curves cease to be closed. Below this threshold the probability of hitting an unstable 
solution is zero. For oscillation energies >ET a sizeable fraction of phase-space 
becomes populated by stochastic solutions. These experiments show that the single 
resonance <x>{ = to2 in an F = 2 oscillator is not sufficient to generate Kolmogorov 
instability at low oscillation energy. The concept of a threshold energy has been clarified 
by Walker and Ford (1969) and developed by Zaslavskii and Chirikov (1972) (see also 
Chirikov, 1979), who pointed out that an overlap of exploded resonant tori is required 
to generate stochastic oscillations. We sketch this idea for an F = 2 oscillator. Expand 
the perturbing Hamiltonian (cf. Equation (16)) in a Fourier series of the angle variables: 

H(ql,q2, pup2) = #o(-A, J2) + e I Hc„um(Ju J2) X 

x cos(«! ipx + n2cp2) + ... (29) 

From the equations of motions observe that a given Fourier component Hc„in2{Jx, J2) 
leads to a non-negligible contribution to Jx or J2 provided that 

eHc
nM, J2)/[nA(Jl, J2) + n2Q2{J„ J2)] = 0 (1) , (30) 

i.e., when a small divisor compensates for the small value of e. 
If just a single Fourier component Hl

nxm is non-zero in the expansion (29), the full 
Hamiltonian is seen to remain integrable. At fixed energy E the denominator in (30) 
becomes small on some torus J° of the unperturbed Hamiltonian; this torus then 
explodes under the influence of the perturbation, (cf. the discussion of the twist map). 
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However, since the new Hamiltonian remains integrable, the explosion merely manifests 
itself by the appearance of second generation tori (Figure 2). The latter are confined to 
an interval AJX near J° of the action axis of the non-perturbed Hamiltonian, given by 

A J, ~ eH'ni„2(J°, J2°)/[«i«,( J?, J!) + n2Q2(J^, /?)] , (31) 

as flows from the equation of motion. 
Suppose next that the Fourier series involves two factors HC„W2 and H^ill2, all other 

expansion factors being zero. The second factor H*,„2, will then play a non-negligible 
part on a torus J\° over which nJD^/ ; 0 , J2°) + n2Q2(J'1°, J2°) becomes small; this 
torus suffers the same fate as torus / ° ; it breaks up into subtori covering again an 
interval AJ\, (given by a relation of type 31) provided that both unperturbed tori J°, J\° 
were sufficiently far away from each other; under those conditions each resonance acts 
as if it existed alone. 

e = 0 

' 1 1 • J, 

T° J ' ° 
A J, A J ; 

J A J ; 
ii-

1 AJ J l 

Fig. 2. Action of a non-integrable perturbation on two nearby resonant tori at positions J° and J\° in the 
energy box; the wavy area is populated by Kolmogorov tori; the shaded overlapping area lodges the 

Kolmogorov unstable orbits. 

If however the exploded tori overlap (shaded area in Figure 2) the previous argument 
breaks down; within the region of overlapping resonances the integrability property is 
essentially lost. Empirically one observes that the condition 

\j°l-J\°\~{]AJl+AJ\\ (32) 

approximately determines the onset of stochasticity (cf. Walker and Ford, 1969). The 
width AJX of an exploded torus increases with a, or equivalently with the energy fed into 
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the oscillation; the existence of a threshold energy ET'm Henon and Heiles's experiments 
then follows directly from the condition of overlap (32). 

Numerical experiments on the effect of a nonlinear coupling of 3 harmonic oscillators 
of linear frequencies col: co2: co3 = 1:2:3 have been performed by Ford and Lunsford 
(1971). Their experiments suggest that under this multiple resonance the threshold 
energy for stochasticity is arbitrarily small. This observation is compatible with the 
concept of overlapping resonances: the contributions 

#3,o.-i cos(3<p, - (p3) + tf2-li0cos(2<j9, - q>2) 
in the Fourier expansion of the perturbed Hamiltonian simultaneously lead to small 
divisors for £ -»0 (or at zero energy). 

(3) If a large number F of harmonic oscillations are interacting, the eventual 
distribution of energy over these oscillators becomes an important issue. Fermi, Pasta 
and Ulam (1955) in an experiment in which harmonic oscillators are coupled to simulate 
a non-linear string, find that the motions remain quasi-periodic, and that no significant 
energy exchange takes place. Ford (1961) emphasises that their negative result is a 
consequence of the lack of approximate resonances among the lower order linear 
frequencies of the string*. Repeating a modified version of this experiment in which the 
frequencies of the harmonic oscillators are chosen to satisfy resonance conditions, Ford 
and Waters (1963) observe a relaxation towards thermalization of their oscillators: 
eventually the time interval over which any oscillator of the system has an energy 
between E and E + dE obeys a Boltzmann law. 

Another variant of the Fermi-Pasta-Ulam experiment is due to Hirooka and Saito 
(1969). These authors analyse a 2-dimensional lattice of oscillators, simulating non­
linear oscillations of membranes. Under those conditions approximate resonances arise 
automatically. If a resonant linear oscillator is excited, the energy first remains trapped 
by this mode during an 'induction period'; then this mode decays and an eventual 
tendency towards equipartition is observed. 

In the light of the heuristic information of the present section, the rigorous results (A) 
and (B) (Section 3) on the behaviour of adiabatic non-linear radial stellar oscillations 
can be specified further: 

(A') If a sufficiently high amount of oscillation energy is fed into the lower oscillation 
modes (violation of KAM through a high factor s), the width of the ever present 
exploded tori (Equation (31)) can become appreciable, so that an overlapping of 
neighbouring exploded tori can take place. Therefore, Kolmogorov unstable oscillations 
are expected to occur among the lowest modes, provided that the energy input is large 
enough. The experiments discussed under (3) then suggest that an efficient diffusion of 
the oscillation energy towards higher modes should take place. 

The phenomenon of enhanced energy diffusion among the stellar modes in the 
presence of non-linear resonance effects has actually been observed by Papaloizou 
(1973a, b) 
* In the Fermi-Pasta-Ulam experiments lowest order modes alone had initially been excited; Izrailev and 
Chirikov (1966) point out that an initial excitation of sufficiently high modes would have favoured the 
occurrence of stochastic motions. 
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(B') If one or several neighbouring asymptotic modes are initially excited, the quasi-
resonances (28') imply that an overlap of exploded tori can occur at a very 
low threshold. Kolmogorov unstable oscillations should then be the rule rather 
than the exception. From the experiments listed under (1) one expects a power 
spectrum with a sequence of overlapping bands at the asymptotic frequencies 
1 ~ coN+l, a>N+l ~ a>N+2,..., coN + „ ~ 0JN + „+u . . . (in relative units co^ = l)possibly 
merging into one very broad band; moreover, near the origin a single broad peak should 
appear, due to the second order resonances 

W r e s ~ OJN+n+l-CON+n = - + 0[ - ) , K = 0 , 1 , 2 . . . ; (33) 
N \N2J 

in absolute units a>res = Qa + 0(\/N); cf. Equation (28). 
The surprising observation is that each asymptotic neighbouring pair of energised 

modes provides a power contribution at essentially the same frequency (33). The power 
spectrum of such a motion is then expected to show a conspicuous band peaked near 
the origin and joining a low level very broad band. 

5. Numerical Experiments on Nonlinear Oscillations in Stars 

This section is intended to demonstrate that the mathematical conclusions (A) and (B) 
as well as the informed guesses (A') and (B') do in fact hold in the stellar context. 
Moreover, we wish to get a quantitative idea of the orders of magnitude of the amplitude 
of the surface displacement under which the Kolmogorov instability sets in. We are also 
interested in the specific form of the time-behaviour of the surface displacement as well 
as of its power spectrum in this instability regime. 

The numerical analysis is performed in the framework of the standard polytrope of 
index n = 3. Since this model is fairly representative for a whole class of stars, our 
conclusions are hoped to be 'typical' for stellar oscillations. 

We shall briefly report here on just a few experiments. Technical details and a variety 
of numerical illustrations will be published elsewhere (Perdang and Blacher, 1982a, b). 

In all our calculations the power series of the oscillation Hamiltonian 
(Equations (8), (8')) was terminated after the cubic interaction V°}. The numerical 
analysis was then carried through as if this truncated expansion represented the exact 
Hamiltonian. 

2-MODE INTERACTION 

For any pair (;', j) among the lowest radial modes (/,_/= 0, 1 , . . . , 9) (0: fundamental; 
1: first harmonic;...) the equipotential curves (cf. Equation (8)) 

v(Qi,Qj)=— Z (<0hl + Pl)+— X Vklmqkq,qm 
2 ! k^i.i 3 ! k,I,m = i,i 

(34) 
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Fig. 3. Shape of the equipotential surface V = cst for the fundamental mode - first harmonic coupling. 
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Fig. 4. Escape energy vc for (/,;') couplings (vc in units GM2/R). 
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in the neighbourhood of the stable state 0 (qt = q^ = 0) of the qt, qt plane have the typical 
form shown in Figure 3. For low values of v the curves are elliptical; they remain closed 
for 0 < i; < vc, where vc is a critical value such that the equipotential V(q„ q-) = vc goes 
through a saddle point S of the energy surface; for v > vc, the equipotentials become 
open curves in the neighbourhood of the stable equilibrium. The value vc thus defines 
an escape energy, just as in the Henon-Heiles oscillator. The shape of this potential 
well of non-linear two-mode interactions in stellar oscillations shows that the latter are 
mechanically modelled by the motion of a marble in a sauce-boat. 

Figure 3 refers to the (0, 1) coupling; in the (0, j) coupling j = 2,3,... the potential 
surface becomes steeper in the ^-direction with increasing j values, while the saddle 
point S shifts towards the origin and towards the ^ -axis. The critical energy vc decreases 
rapidly with j (cf. Figure 4). Since in the Henon—Heiles experiment the threshold 
ET = 0(vc) < vc, we expect that in the stellar case Kolmogorov instability takes place 
at a threshold close to vc. Figure 4 then leads us to conjecture that the threshold energy 
decreases rapidly with the orders (i, j) of the coupled modes; if it is allowed to 
extrapolate this diagram into the asymptotic range, the coupling (N, N + 1) generates 
Kolmogorov instability at an arbitrarily small threshold, provided that N is large enough. 

In the (0, 1) coupling the frequencies are non-resonant (col/a)0 = 1.355). From result 
(A) we know that the oscillations remain regular at low oscillation energy E < vc. At 
sufficiently high energy a Kolmogorov instability is suspected to set in (A'). In fact at 
the oscillation energy E = vc a large fraction of the energy manifold is numerically found 
to carry unstable motions; Kolmogorov instability of these solutions has been established 
via the standard method of the surface of section: the sequence of successive inter­
section points of the same orbit in the energy manifold covers a finite area on the surface 
of section (instead of a curve). 

Figure 5 exhibits an example of such a solution. We display: 
(a) the relative stellar surface displacement 

br/R = S0q0 + Zxqx ( M / * < 0.5) (35) 

(£0 = 23.2; £, = -87.7: surface values of the linear eigenfunctions under the norma­
lisation (6); the maximum allowed q0 and #, -values are given by the coordinates of the 
saddle point; hence the inequality); 

(b) a lower resolution power spectrum of br/R (integration time T = 819.2 in units 
(o0 = 1); and 

(c) a high resolution spectrum of the low-frequency range {T = %T). 
The time behaviour clearly reveals several pseudo-periods which manifest themselves 

in the spectrum as bands around the (slightly shifted) linear frequencies co0, to,, 
co0 + a>1, co, - Q)0. An observer would presumably take spectrum (b) as evidence for 
exact periods, especially if his resolution is still poorer (note that here T~ 130 

Fig. 5. Two-mode interaction (0, 1): (a) time-behaviour of a Kolmogorov unstable surface displacement k 
br/R; (b) corresponding power spectrum at lower resolution; (c) low-frequency end of the power spectrum 

at high resolution. 

https://doi.org/10.1017/S0252921100095646 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095646


KOLMOGOROV UNSTABLE STELLAR OSCILLATIONS 315 

0.75 1.5 

https://doi.org/10.1017/S0252921100095646 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095646


316 J. PERDANG 

fundamental mode periods). Near the origin we have no conspicuous band (cf. (c)) due 
to the lack of an approximate resonance of order 2 in the linear frequencies; the broad 
band around 0.3 co0 is however reminiscent of the power spectra of Henon-Heiles 
stochastic oscillations (Blacher and Perdang, 1981a). 

The relative surface amplitude under which these Kolmogorov unstable oscillations 
occur is close to 0.5 (cf. Equation (35)), so that a (0, 1) instability is not a common 
phenomenon in real stars. 

In the (8,9) coupling the frequencies are closer to a resonance of order 2 
(co9/cos = 1.098). This coupling is selected to provide us some insight into the effect of 
2-mode interactions in the asymptotic regime. Stochastic oscillations are now 
encountered at an energy ~ 0.9 vc (hence ET<0.9 vc). The surface amplitude for these 
motions obeys \br/R\ < 0.08 (£8 = 5.7 x 103, £9 = -7.8 x 103). The Kolmogorov 
instability in the (8, 9) coupling is thus found to occur at an amplitude level 6 times lower 
than in the (0, 1) coupling. In Figure 6 we illustrate the typical features of such a 
stochastic solution. The time-run (a) shows a conspicuous pseudo-period P ~ 9 (units 
cos = 1) which shows up as a broad band in spectrum (b) (T = 819.2 in units co8 = 1). 
In the high resolution spectrum (c) (7" = 87) an additional band near the origin does 
materialise, as expected (B'). The general shape of this latter spectrum already bears 
some analogy with the structure of the SCLERA solar spectra. 

A tentative extrapolation of the previous figures suggests that for modes of asymptotic 
order around 100, the relative surface amplitude level for stochasticity is ~ 10- 3. 

MULTIPLE-MODE INTERACTION 

The equipotential surfaces for a coupling (/1; i2,..., iF) between F(>2) linear modes 
j , ,i2,..., iF in the neighbourhood of the stable equilibrium state 0(g(1 = qi2= ... qjp = 0) 
are again given by an expression of form (34) where k, I, and m are now ranging over 
iu i2, •••, iF. For V(qh, qh,... , qif) = v< vc these surfaces are closed; for V = v> vc 

they become open; the critical surface V = vc possesses a multiple point S. A motion 
of energy less than vc remains bounded; if its energy exceeds vc it can escape; it is 
however worth noting that the time interval over which an orbit remains trapped in a 
potential pocket at energy v > vc increases sharply with F (Perdang and Blacher, 1982b). 

In the (0, 1, 2, 3)-coupling the linear frequencies obey a>0: co,: a>2: co3 = 
= 1:1.35:1.75:2.17, so that we have no approximate low order (^4) resonances 
among these frequencies. Therefore stochastic motions are not expected to occur at a 
threshold energy significantly lower than vc. 

At the critical energy vc Kolmogorov instability is again observed. Figure 7 provides 
an example of the relative surface displacement 

br/R = £0q0 +£,<?, + £2<72 + £3<Z3 , 3 6 ) 

(^2 = 2.36 x 102, £3= -5.21 x 102). 

Two pseudo-periods show clearly up in the time run (a), a periodicity ~ 3.5 (in units 
co0 = 1) and a beat periodicity ~ 20; they correspond to the highest broadened peaks 
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Fig. 6. Two-mode interaction (8, 9): (a) time behaviour of a Kolmogorov unstable surface displacement 
br/R; (b) corresponding lower resolution power spectrum; (c) low-frequency end at higher resolution. 
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Fig. 7. Four-mode interaction (0,1,2,3): (a) Kolmogorov unstable surface displacement br/R; and 
(b) corresponding lower resolution power spectrum. 
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of the power spectrum (b) (T = 819.2). At low resolution, say T" ~ \T, the broadened 
peaks in (b) appear as fine lines; such a spectrum would mistakenly be interpreted as 
being due to harmonic, or quasi-periodic motions (cf. Equations (11"), (11'"))- At high 
resolution (T = ST) each peak appears as a broad structured band analogous to the 
feature shown in Figure 5c. The fractal dimensions of all bands in the power spectra 
analysed are found to lie in the range 1.3 < d S 1-5. 

6. Conclusion and Outlook 

The main result of the present analysis is the numerical proof that stellar adiabatic radial 
motions about a dynamically stable equilibrium state can exhibit the Kolmogorov 
instability. While in lower order mode couplings large surface displacements are required 
to produce this instability (|^r|//? ~ 0.5 for the (0, 1) coupling), the amplitude of the 
surface displacements decreases steadily with the orders of the coupled modes, so that 
in the asymptotic frequency range this instability can set in fairly easily. 

It is thought - although this point remains to be proved in the stellar context - that 
the physically most relevant role of this instability is to secure an efficient energy transfer 
between all modes, which eventually leads to an equipartition of oscillation energy 
between all coupled degrees of freedom. If this conjecture holds a statistical approach 
to the distribution of the surface amplitudes as a function of frequency becomes 
meaningful under such stochasticity conditions. We might add that following remark 
(B') one has to expect then a very broad-band asymptotic spectrum, due to the blown 
up and overlapping linear asymptotic frequency peaks at coN, coN+ , , . . . , together with 
an intrinsically non-linear component, namely a band centred at the zero-frequency (or 
perhaps closer to the frequency cores; cf. Equation (33)), resulting from a piling up of 
power at the quasi-resonance of order 2; presumably, similar bands related to higher 
order resonances will appear, centered at about 2 a>res, 3 ft)res,... whose heights are 
rapidly decreasing with order; the overlapping of these bands gives the power spectrum 
the characteristic structure of 'l//-noise' in the low frequency region. 

The readymade exploratory analysis of this paper pertains to all approximately 
adiabatic stellar oscillation phenomena. Obviously each specific type of variability 
requires a tailormade application of the theory. This is in particular so in the context 
of solar oscillations: since observation reveals non-radial motions, an extension of the 
present formalism to the non-radial case is needed. The very fact that a Hamiltonian 
formalism continues to hold means that the main theoretical conclusions (A and B) 
survive with however several modifications. 

Resonances and approximate resonances are much more likely to occur among the 
non-radial modes than among the radial ones just as they are more probable in a 
membrane than in a string. In fact we now have 3 distinct types of resonance: 

(1) A (2/ + l)-fold degeneracy, due to the radial symmetry of the equilibrium state, 
for any frequency (acoustic or gravity mode) of degree / # 0; hence we have an infinity 
of exact resonances of order 2; provided that the potential is such that eigenfunctions 
\k,i,m °f same radial order k and same degree / but of different azimuthal number m 
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become coupled in the non-linear regime then these resonances favour the Kolmogorov 
instability; (surface amplitudes lower than in the radial oscillations will be required for 
this instability to set in). 

(2) Sharp resonances of order 2 are known to occur among gravity modes associated 
with two nearby radiative zones separated by a convective shell (cf. Ledoux and 
Perdang, 1980). 

(3) From the representation formula for acoustic frequencies of asymptotically large 
radial order k = N and low degree / one has 

(JV->oo): coNj=o)N„u/+2 + 0(l/N2) (37) 

(cf. Christensen-Dalsgaard and Gough, 1980, for an estimate of the accuracy of this 
relation in the context of the Sun) so that a quasi-resonance much tighter than for 
adjacent radial asymptotic modes obtains. 

It seems therefore reasonable that in the same asymptotic range the onset of 
Kolmogorov unstable non-radial oscillations will occur at a very much lower amplitude 
level than for radial oscillations. Unfortunately, since the interaction potential for 
non-radial modes, and in particular the location of its critical point closest to the origin 
is unknown, we are not in a position to make any quantitative estimate of the surface 
amplitude needed to generate such stochastic oscillations. In any event, if the acoustic 
oscillations are Kolmogorov unstable, one expects a power spectrum of the surface 
displacement with a 1//-noise shape near the frequency origin, which should extend over 
several times the resonance frequency cores; the tail of this distribution joins a wide band 
of broadened overlapping pseudo-linear asymptotic frequency peaks (pseudo-linear in 
the sense that their centres are slightly shifted towards the left by the coupling effect). 

For currently favoured solar models the second order resonance frequency 
a>res ~ 0.136 mHz (Christensen-Dalsgaard and Gough, 1980); this amounts to a 
periodicity slightly in excess of 2hr. 

The SCLERA solar power spectra have an overall structure in agreement with the 
theoretically expected shape of a Kolmogorov unstable power spectrum. This is 
indicative that a detailed numerical investigation of non-linear non-radial acoustic mode 
couplings is needed before a convincing identification of the peaks can be performed. 
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