Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:07:44.521Z Has data issue: false hasContentIssue false

Intermittency

Published online by Cambridge University Press:  15 February 2018

Uriel Frisch*
Affiliation:
Observatoire de Nice, France

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Turbulence is usually associated with the idea of chaos, i.e. erratic behaviour of some observable quantity. Let me stress that there are at least two different kinds of chaos.

Type
IX. Turbulence
Copyright
Copyright © 1976

References

André, J.C. & Lesieur, M. 1977, Evolution of high Reynolds number turbulence, J. Fluid Mech., to appearGoogle Scholar
Batchelor, G.K. & Townsend, A.A. 1949, Proc. Roy. Soc. A 19938, 238 Google Scholar
Batchelor, G.K. 1953, Theory of homogeneous turbulence, Cambridge U. Press Google Scholar
Childress, S. & Spiegel, E. 1976, Private communicationGoogle Scholar
Frisch, U., Lesieur, M. & Sulem, P.L. 1976, Phys. Rev. Lett. 3738, 895 Google Scholar
Frisch, U., Sulem, P.L. & Nelkin, M. 1977, A simple dynamical model of intermittent fully developed turbulence, submitted J. Fluid Mech.Google Scholar
Harvey, J.W. 1976, Private communicationGoogle Scholar
Herring, J. 1973, Private communicationGoogle Scholar
Kolmogorov, A.N. 1941, C. R. Acad. Sci. USSR 3038. 301, 538Google Scholar
Kraichnan, R.H. 1965, Phys. Fluids 838, 1385 Google Scholar
Kraichnan, R.H. 1972 in “Statistical Mechanics : New concepts, New problems, New applications”, Rice, S.A., Fried, K.F. & Light, J.C. Eds., University of Chicago Press, Chicago Google Scholar
Kraichnan, R.H. 1974, J. Fluid Mech. 6238, 305 Google Scholar
Kraichnan, R.H. 1975, J. Fluid Mech. 6738, 155 Google Scholar
Kuo, A.Y. & Corrsin, S. 1971, J. Fluid Mech. 5038, 285 Google Scholar
Léorat, J. 1975, Thesis, Observatoire de Meudon, Meudon, France Google Scholar
Lesieur, M. & Sulem, P.L. 1976, “Les équations spectrales en turbulence homogène et isotrope : quelques résultats théoriques et numériques” in “Proc. Journées Mathématiques sur la Turbulence”, Temam, R. ed., Springer Lecture Notes in Math., to appearCrossRefGoogle Scholar
Lorenz, E.N. 1963, J. Atmos. Sci. 2038, 130 Google Scholar
Mandelbrot, B. 1974, J. Fluid Mech. 6238, 331 Google Scholar
Mandelbrot, B. 1975, “Les Objets Fractals : Forme, Hasard et Dimension”, Flammarion, Paris Google Scholar
Mandelbrot, B. 1976, “Intermittent turbulence and fractal dimension : kurtosis and the spectral exponent 5/3 + B” in “Proc. Journées Mathématiques sur la Turbulence”, Orsay, June 1974, Temam, R. ed., Springer Lecture Notes in Mathematics, to appearGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1975, Statistical Fluid Mechanics, vol. 238 , MIT Press Google Scholar
Novikov, E.A. & Stewart, R.W. 1964, Isvestia Akad. Nauk USSR, Ser. Geophys. n° 3, p. 408 Google Scholar
Orszag, S. 1976a, ‘Statistical Theory of Turbulence” in “Proc. Les Houches 1973”, Balian, R. ed., North Holland, to appearGoogle Scholar
Orszag, S. 1976b, Private communicationGoogle Scholar
Pouquet, A. 1976, “Remarks on two dimensional MHD turbulence”, preprintGoogle Scholar
Pouquet, A., Frisch, U. and Léorat, J. 1976, J. Fluid Mech. 7738, 321 Google Scholar
Stenflo, J.O. 1976, “Influence of magnetic fields on solar hydrodynamics: experimental results”, to appear in “Proc. of IAU Coll. n° 36” held at Nice, September 1976Google Scholar
Sulem, P.L. & Frisch, U. 1975, J. Fluid Mech. 7238, 417 Google Scholar
Wolibner, W. 1933, Math. Zeitschr. 3738, 698 Google Scholar