Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:13:02.952Z Has data issue: false hasContentIssue false

Gravitational Collapse of Mass-Accreting White Dwarfs

Published online by Cambridge University Press:  12 April 2016

J. Isern
Affiliation:
Centre d’Estudis Avançats de Blanes, CSIC 17300 Blanes (Girona), Spain
R. Canal
Affiliation:
Departament de Física de l’Atmosfera, Astronomia i AstrofisicaUniversitat de Barcelona, 08028 Barcelona, Spain
D. García
Affiliation:
Universitat Politècnica de Catalunya 08028 Barcelona, Spain
M. Hernanz
Affiliation:
Universitat Politècnica de Catalunya 08028 Barcelona, Spain
J. Labay
Affiliation:
Departament de Física de l’Atmosfera, Astronomia i AstrofisicaUniversitat de Barcelona, 08028 Barcelona, Spain

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive star (M ≥ 10 M ) core collapse is the standard mechanism for neutron star formation (see Brown 1988 for a recent review). It has long been realized (see, for instance, van den Heuvel 1988, and references therein) that the neutron stars found in different types of binary systems cannot come from such a standard mechanism. Those systems include wide binary radio pulsars, millisecond pulsars (not in wide binaries), galactic bulge X–ray sources (including QPO’s), type I X–ray burst sources and X–ray transients, andγ–ray sources. Formation of those neutron stars is now widely attributed to the gravitational collapse of a white dwarf, growing above Chandrasekhar’s limit by mass accretion from the current neutron star’s companion in the binary system (Canal and Schatzman 1976; Canal and Isern 1979; Canal, Isern, and Labay 1980; Miyaji et al. 1980). Mass growth up to dynamical instability means that both explosive ejection of the accreted layers and explosive disruption of the whole star must be avoided. The former is associated with the nova phenomenon. The latter, with the occurrence of type I supernovae.

Type
Research Article
Copyright
Copyright © Springer-Verlag 1989

References

Barrat, J.L., Hansen, J.P., Mochkoviten, R. 1988, Astron. Astrophys., 199, L15 Google Scholar
Brown, G.E. 1988, Phys. Rept., 163, 1 Google Scholar
Canal, R., Schatzman, E. 1976, Astron, Astrophys, 46, 229 Google Scholar
Canal, R., Isern, J. 1979, in White Dwarfs and Variable Degenerate Stars, ed. Van Horn, H.M. and Weidemann, V. (Univ. Rochester Press, Rochester), p. 52 Google Scholar
Canal, R., Isern, J., Labay, J. 1980, Astrophvs. J. (Letters). 241, L33 CrossRefGoogle Scholar
Hernanz, M., Isern, J., Canal, R., Labay, J., Mochkovitch, R. 1988, Astrophys. J., 324, 331 CrossRefGoogle Scholar
Isern, J., Labay, J., Canal, R. 1984, Nature. 309, 431 CrossRefGoogle Scholar
Isern, J., Canal, R., Garcia, D., Garcia-Berro, E., Hernanz, M., Labay, J. 1988, Adv. Space Res., in the pressGoogle Scholar
Labay, J., Canal, R., Garcia-Berro, E., Hernanz, M., Isern, J. 1985, in Recent Results on Cataclysmic Variables. ed. Rahe, J. (ESA SP-236)Google Scholar
Miyaji, S., Nomoto, K., Yokoi, K., Sugimoto, D. 1980, Pub. Astron. Soc. Japan. 32, 303 Google Scholar
Miyaji, S., Nomoto, K. 1987, Astrophys. J., 318, 307 CrossRefGoogle Scholar
Mochkovitch, R. 1983, Astron. Astrophvs., 122, 212 Google Scholar
Nomoto, K. 1986, Progr. Part. Nucl. Phys., 17, 249 CrossRefGoogle Scholar
Nomoto, K. 1987, in The Origin and Evolution of Neutron Stars. ed. Helfand, D.J. and Huang, J.-H. (Reidel, Dordrecht), p. 281 CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.K., Yokoi, K. 1984, Astrophys. J., 286, 644 CrossRefGoogle Scholar
Shaviv, G., Starr-field, S. 1987, Astrophys. J. (Letters). 321, L51 CrossRefGoogle Scholar
Sparks, W.M., Kutter, G.S. 1987 Astrophys. J., 321, 394 CrossRefGoogle Scholar
Stevenson, D.J. 1980, J. Phys. Suppl., No. 3, 41, C2-53Google Scholar
Sutherland, P.G., Wheeler, J.C., 1984, Astrophys. J., 280, 282 CrossRefGoogle Scholar
van den Heuvel, E.P.J. 1988, Adv. Space Res., in the pressGoogle Scholar
Woosley, S.E., Weaver, T.A. 1986, in Radiation Transport and Hydrodynamics. IAU Coll. No. 89, ed. Mihalas, D. Winkler, K.H.. Dordrecht: Reidel Google Scholar