No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The topic I was originally assigned for this colloquium was “Generation of Non Thermal, Non Oscillatory Motions”. Being basically a fluid dynamicist, at first I thought this meant I was supposed to talk about the origin of motions which are not thermally driven, i.e., I should not talk about convection. But then I realized all that was meant was that I was to talk about bulk fluid motions, rather than the molecular “thermal” motion of stellar gas that defines its temperature. Obviously the original question was posed by a stellar spectroscopist! Having surmounted that small semantic hurdle, I began to think about all the ways circulatory motions might be generated in a star. All manner of fluid dynamical instabilities come to mind--not only convective instability, but also barotropic or inertial, baroclinic, Kelvin-Helmholz, Rayleiqh-Taylor, Goldreich-Shubert, Solberg-Hoiland, etc. The list is large, overlapping, I am sure confusing to an observer (and to many a theoretician). Then there are Eddington-Sweet currents, and several additional motions arising from the presence of magnetic fields--fields which give rise to magnetic buoyancy of flux tubes, and large collection of magnetohydrodynamic instabilities.