Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:34:13.647Z Has data issue: false hasContentIssue false

Clustered Supernovae vs. The Gaseous Disk and Halo: A Rematch

Published online by Cambridge University Press:  12 April 2016

Carl Heiles*
Affiliation:
University of California, Berkeley

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent developments, both observational and theoretical, require a reevaluation of the effects of clustered supernovae on the two-dimensional porosity parameter Q2D and the rates of mass injection into the halo of both cold and hot gas. Clustered supernovae produce two types of bubble. Most clusters produce breakthrough bubbles, which do no more than break through the dense gas disk. But large clusters produce enough energy to make blowout bubbles, which blow gas up into the halo. We calculate area filling factors and mass injection rates into the halo for different types of galaxy. We relate our calculations to two observables, the area covered by H I ‘holes’ and the area covered by giant H II regions. We also reiterate the difficulty of producing the very largest supershells by clusered supernovae.

Type
VII. The Structure of the Interstellar Medium
Copyright
Copyright © Springer-Verlag 1989

References

Blaauw, A. 1964, Ann. Rev. Astron. Ap., 2, 213.CrossRefGoogle Scholar
Brinks, E. 1989, personal communication.Google Scholar
Brinks, E. and Bajaja, E. 1986, Astron. Ap., 169, 14.Google Scholar
Courtés, G., Petit, H., Sivan, J.-P., Dodonov, S., and Petit, M. 1987, Astron. Ap., 174, 28.Google Scholar
Deul, E.R., and den Hartog, R.G. 1989, Astron. Ap., in press.Google Scholar
Güsten, R., and Mezger, P.G. 1982, Vistas in Astron., 26, 159.CrossRefGoogle Scholar
Heiles, C. 1979, Ap. J., 229, 533.CrossRefGoogle Scholar
Heiles, C. 1980, Ap. J., 235, 833.CrossRefGoogle Scholar
Heiles, C. 1984, Ap. J. Suppl., 55, 585.CrossRefGoogle Scholar
Heiles, C. 1987, Ap. J., 315, 555 (Paper I).CrossRefGoogle Scholar
Heiles, C. 1989, Ap. J., submitted.Google Scholar
Kennicutt, R.C. Jr., Edgar, B.K., and Hodge, P.W. 1989, Ap. J., 337, 761.CrossRefGoogle Scholar
Koo, B-C 1989, private communication.Google Scholar
Lequeux, J., Maucherat-Joubert, M., Deharveng, J.M., and Kunth, D. 1981, Astron. Ap., 103, 305.Google Scholar
Lockman, F.J. 1984, Ap. J., 283, 90.Google Scholar
Lockman, F.J., Hobbs, L.M., and Shull, J.M. 1986, Ap. J., 301, 380.CrossRefGoogle Scholar
Mac Low, M. and McCray, R. 1988, Ap. J., 324, 776.CrossRefGoogle Scholar
Mac Low, M., McCray, R., and Norman, M.L. 1989, Ap. J., 337, 141.CrossRefGoogle Scholar
McCray, R. and Kafatos, M. 1987, Ap. J., 317, 190.CrossRefGoogle Scholar
McKee, C.F. 1989, Ap. J., in press.Google Scholar
McKee, CF., van Buren, D., and Lazareff, B. 1984, Ap. J., 278, L115.CrossRefGoogle Scholar
Meaburn, J. 1980, Mon. Not. R. Astron. Soc., 192, 365.CrossRefGoogle Scholar
Melnick, J., Terlevich, R., and Eggleton, P.P. 1985, Mon. Not. R. Astron. Soc, 216, 255.Google Scholar
Mirabel, F. 1982, Ap. J., 256, 112.CrossRefGoogle Scholar
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (Wiley: New York).Google Scholar
Tenorio-Tagle, G. 1981, Astron. Ap., 94, 338.Google Scholar
Tenorio-Tagle, G., Bodenheimer, P., and Różyczka, M. 1987, Astron. Ap., 182, 120.Google Scholar
Tenorio-Tagle, G., Franco, J., Bodenheimer, P., and Różyczka, M. 1987, Astron. Ap., 179, 219.Google Scholar
van der Hulst, T., and Sancisi, R. 1988, Astron. J., 95, 1354.CrossRefGoogle Scholar
Weaver, R., McCray, R., Castor, J., Shapiro, P., and Moore, R., 1977, Ap. J., 218, 377.CrossRefGoogle Scholar