Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T00:45:41.186Z Has data issue: false hasContentIssue false

2.1.5 Flux of Hyperbolic Meteoroids

Published online by Cambridge University Press:  12 April 2016

J.S. Dohnanyi*
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg/F.R.G.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The production of hyperbolic meteoroids by inelastic collisions between meteoroids is estimated. It is found that, under reasonable assumptions, the calculated flux of hyperbolic meteoroids agrees with satellite data and with lunar microcrater distributions.

We have therefore obtained independent theoretical support for Zook and Berg’s (1975) ß-meteoroid hypothesis and for Fechtig et al. (1974) suggestion that submicron lunar microcraters are produced by ß-meteoroids.

Type
2 In Situ Measurements of Interplanetary Dust
Copyright
Copyright © Springer-Verlag 1976

References

Berg, O.E., and Grün, E. (1973), “Evidence of hyperbolic cosmic dust particles”, Space Research XIII, pp. 10461055.Google Scholar
Brownlee, D.E., Hörz, P., Hartung, J.B., and Gault, D.E. (1972), “Micrometeoroid craters smaller than 100 microns”, in: The Apollo 15 Lunar Samples, pp. 407409. The Lunar Science Institute, Houston.Google Scholar
Dohnanyi, J.S. (1969), “Collisional model of asteroids and their debris”, J. Geophys. Res. 74, 25312554.Google Scholar
Dohnanyi, J.S. (1970), “On the origin and distribution of meteoroids”, J. Geophys. Res. 75, 34683493.Google Scholar
Dohnanyi, J.S. (1972), “Interplanetary objects in review: statistics of their masses and dynamics”, Icarus 17, 148.Google Scholar
Dohnanyi, J.S. (1973)» “Current evolution of meteoroids”, Proc. of the IAU Colloquium No. 15, NASA SP-319, pp. 363374.Google Scholar
Eichhorn, G. (1976), “impact light flash studies: Temperature, ejecta and vaporization”, this Volume.Google Scholar
Fechtig, H. (1976), “In situ records of interplanetary dust particles -methods and results”, this Volume.Google Scholar
Fechtig, H., Gentner, W., Hartung, J.B., Nagel, K., Neukum, G., Schneider, E., and Storzer, D. (1975), “Microcraters on lunar samples”, Proc. of the Soviet-American Conference on Cosmo-chemistry, Pergamon Press (in press).Google Scholar
Fechtig, H., Hartung, J.B., Nagel, K., Neukum, G., and Storzer, D. (1974) “Microcrater Studies, Derived Meteoroid Fluxes and Comparison with Satellite-Borne Experiments”, Lunar Science V, Abstract Vol. pp. 22-224 Proc. Fifth Lunar Sci. Conf. Geochim. Cosmochim. Acta Suppl. 5, Vol. 3, 4, pp. 24632474.Google Scholar
Gault, D.E., Shoemaker, E.M., and Moore, H.J. (1965), “Spray ejected from the Lunar surface by meteoroid impact”, NASA Rept. TND-1767.Google Scholar
Grün, E., Berg, O.E., and Dohnanyi, J.S. (1975), “Reliability of cosmic dust data from Pioneer 8 and 9”, Space Research XIII, pp. 10571062.Google Scholar
Hartung, J.B., Hörz, F., and Gault, D.E. (1972), “Lunar microcraters and interplanetary dust”, Proc. Third Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 5, Vol. 3, PP. 27352753. MIT Press.Google Scholar
Harwit, M. (1965), “Origins of the zodiacal dust cloud”, J. Geophys. Res. 68, 21712180.Google Scholar
Hörz, F., Hartung, J.B., and Gault, D.E. (1971), “Micrometeorite craters and lunar rock surfaces”, J. Geophys. Res. 76, 57705798.Google Scholar
Hoffmann, H.J., Fechtig, H., Grün, E., and Kissel, J. (1975), “First results of the micrometeoroid experiment S-215 on the HEOS 2 satellite”, Planet. Space Sci. 23, 215224.Google Scholar
Mandeville, J.C., and Vedder, J.F. (1971), “Microcraters formed in glass by low density projectiles”, Earth Planet. Sci. Letters 11, 297.Google Scholar
McCrosky, R.E., and Posen, A. (1961), “Optical elements of photographic meteors”, Smithson. Contrib. Astrophys. 4, 1584.Google Scholar
McDonnell, J.A.M., Berg, O.E., and Richardson, F.F. (1975), “Spatial and time variations of the interplanetary microparticle flux analysed from deep space probes Pioneers 8 and 9”, Planet. Space Sci. 25, 205214.Google Scholar
Neukum, G. (1971)» “Untersuchungen über Einschlagskrater auf dem Mond”, Ph.D. Thesis, Universität Heidelberg.Google Scholar
Neukum, G., Schneider, E., Mehl, A., Storzer, D., Wagner, G.A., Fechtig, H., and Bloch, M.R. (1972), “Lunar craters and exposure ages derived from crater statistics and solar flare tracks”, Proc. Third Lunar Sci. Conf., Geochim. Cosmochim. Acta, Suppl. 3, Vol. 3, pp. 27932810. MIT Press.Google Scholar
Schneider, E., Storzer, D., Hartung, J.B., Pechtig, H., and Gentner, W. (1973), “Microcraters on Apollo 15 and 16 samples and corresponding Cosmic Dust Fluxes”, Proc. Fourth Lunar Sci. Conf., Geochim. Cosmochlm. Acta, Suppl. 4, Vol. 3, pp. 52773290.Google Scholar
Southworth, R.B., and Sekanina, Z. (1973), “Physical and dynamical studies of meteor”, NASA CR-2316.Google Scholar
Whipple, F.L. (1976), “Sources of interplanetary dust”, this Volume.Google Scholar
Zook, H.A. (1975), “Hyperbolic cosmic dust: its origin and its astro-physical significance”, Planet. Space Sci. 23, 13911397.Google Scholar
Zook, H.A., and Berg, O.E. (1975), “A source for hyperbolic cosmic dust particles”, Planet. Space Sci. 23, 183203.Google Scholar