We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc03.manuscriptcentral.com/clp-hpl.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The objective of the Apollon project is the generation of 10 PW peak power pulses of 15 fs at 1 shot/minute. In this paper the Apollon facility design, the technological challenges and the current progress of the project will be presented.
In this review paper, we introduce a self-phase controlled stimulated Brillouin scattering phase conjugate mirror (SC-SBS-PCM) and the Kumgang laser. The SC-SBS-PCM was proposed and demonstrated its success at the academic low power level, ${\sim}100~\text{mJ}@10~\text{Hz}$. The Kumgang laser is under development to verify whether the SC-SBS-PCM is operable at the kW level. It is a 4 kW beam combination laser combining four 1 kW beams using the SC-SBS-PCM. If the Kumgang laser functions successfully, it will be the most important step towards a Dream laser, a hypothetical laser with unlimited power and a high repetition rate.
Experiments have shown that the ion energy obtained by laser–ion acceleration can be optimized by choosing either the appropriate pulse duration or the appropriate target thickness. We demonstrate that this behavior can be described either by the target normal sheath acceleration model of Schreiber et al. or by the radiation pressure acceleration model of Bulanov and coworkers. The starting point of our considerations is that the essential property of a laser system for ion acceleration is its pulse energy and not its intensity. Maybe surprisingly we show that higher ion energies can be reached with reduced intensities.
Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.
A composite transparent YAG/Yb:YAG/YAG ceramic was prepared by a non-aqueous tape-casting method. An optical transmittance of 82% was obtained at visible wavelength and around 1100 nm. A low-threshold, broadband tunable continuous-wave (CW) laser at 1031 nm was further demonstrated from the ceramic sample, which was pumped by a 974 nm fiber-pigtailed laser diode. The threshold pump power was 0.45 W and the maximum output power was 3.2 W, corresponding to a slope efficiency of 20.4%. By inserting an SF57 prism in the laser cavity, the output wavelength could be tuned continuously from 1021 to 1058 nm.
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility (CLF), STFC (Science and Technology Facilities Council) Rutherford Appleton Laboratory (RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of Astra-Gemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
Recently, intense research into laser plasma accelerators has achieved great progress in the production of high-energy, high-quality electron beams with GeV-level energies in a cm-scale plasma. These electron beams open the door for broad applications in fundamental, medical, and industrial sciences. Here we present conceptual designs of an extreme ultraviolet radiation source for next-generation lithography and a laser Compton Gamma-beam source for nuclear physics research on a table-top scale.
Due to the existence of spatial walk-off and/or group-velocity mismatch effects, pump-to-signal phase transfer becomes inevitable during parametric amplification. We experimentally demonstrate that in hybrid seeded optical parametric amplifiers (OPAs) that include two OPA stages seeded by the signal and idler waves, respectively, the phase of the output signal can be restored to its initial value, although there are spatial and temporal phase fluctuations on the pump source. This method significantly relaxes the requirement for high pump beam quality, which is always very stringent in parametric amplification systems. With the introduction of this scheme into birefringent phase-matching OPAs or chirped-pulse OPAs, it should be promising to achieve intense femtosecond laser pulses that are close to the diffraction limit in space and ultra-high contrast in time, simultaneously.
In this paper we consider laser intensities greater than $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}10^{16}\ \mathrm{W\ cm}^{-2}$ where the ablation pressure is negligible in comparison with the radiation pressure. The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer (DL). This DL is accelerated into the target, like a piston that pushes the matter in such a way that a shock wave is created. Here we discuss two novel ideas. Firstly, the transition domain between the relativistic and non-relativistic laser-induced shock waves. Our solution is based on relativistic hydrodynamics also for the above transition domain. The relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and rarefaction wave velocity in the compressed target, and temperature are calculated. Secondly, we would like to use this transition domain for shock-wave-induced ultrafast ignition of a pre-compressed target. The laser parameters for these purposes are calculated and the main advantages of this scheme are described. If this scheme is successful a new source of energy in large quantities may become feasible.
Beam alignment depends on CCD real-time image analysis and processing. In order to improve the quality of the alignment, multiple filters are used in far-field and near-field image processings. These multiple filters are constituted of an average filter and a median filter in different connection sequences, so that they can deal with different kinds of noise. To reduce the effect of the unknown nonlinear relationship between motor running steps and deviation pixels, a feasible methodology is offered to improve this phenomenon and a fuzzy algorithm is applied to the motor feedback control process. Because of the fuzzy control it is not necessary to establish an accurate mathematical model, so the impact of the nonlinear relationship will be reduced.