Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T07:56:39.330Z Has data issue: false hasContentIssue false

Symplectic bilinear forms on affine real algebraic surfaces

Published online by Cambridge University Press:  18 May 2009

W. Kucharz
Affiliation:
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a commutative ring A with identity, let W–1(A) denote the Witt group of skew-symmetric bilinear forms over A (cf. [1] or [7] for the definition of W–1 (A)).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1989

References

1.Barge, J. and Ojanguren, M., Fibrés algébriques sur une surface réelle, Comment. Math. Helv. 62 (1987), 616629.CrossRefGoogle Scholar
2.Bochnak, J. and Kucharz, W., Sur les classes d'homologie représentables par des hypersurfaces algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 609611.Google Scholar
3.Borel, A. and Haefliger, A., La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461513.CrossRefGoogle Scholar
4.Colliet-Thélène, J. L. and Ischebeck, F., L'èquivalence rationelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 723725.Google Scholar
5.Fulton, W., Intersection Theory, Ergebnisse der Math. vol. 2 (Springer, 1984).CrossRefGoogle Scholar
6.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. (2) 79 (1964), 109326.CrossRefGoogle Scholar
7.Ojanguren, M., Parimala, R. and Sridharan, R., Symplectic bundles over affine surfaces, Comment. Math. Helv. 61 (1986), 491500.CrossRefGoogle Scholar
8.Silhol, R., Cohomologie de Galois et cohomologie des variétés algébriques réplies; applications aux surfaces rationelles, Bull. Soc. Math. France 115 (1987), 107125.CrossRefGoogle Scholar