Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T01:59:32.811Z Has data issue: false hasContentIssue false

Subalgebras, direct products and associated lattices of MV-algebras

Published online by Cambridge University Press:  18 May 2009

L. P. Belluce
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B. C., Canada
A. Di Nola
Affiliation:
Istituto di Matematica, Facolta' di Architettura, Universita' Di Napoli, 80134 Via Monteoliveto N. 3, Napoli, Italy
A. Lettieri
Affiliation:
Istituto di Matematica, Facolta' di Architettura, Universita' Di Napoli, 80134 Via Monteoliveto N. 3, Napoli, Italy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

MV-algebras were introduced by C. C. Chang [3] in 1958 in order to provide an algebraic proof for the completeness theorem of the Lukasiewicz infinite valued propositional logic. In recent years the scope of applications of MV-algebras has been extended to lattice-ordered abelian groups, AF C*-algebras [10] and fuzzy set theory [1].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1992

References

REFERENCES

1.Belluce, L. P., Semisimple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math., 38 (1986), 13561379.CrossRefGoogle Scholar
2.Belluce, L. P., A. Di Nola and A. Lettieri, On some lattices quotients of MV-Algebras, Ricerche di Matemat. 39 (1990), 4159.Google Scholar
3.Chang, C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467490.CrossRefGoogle Scholar
4.Chang, C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 7480.Google Scholar
5.Cignoli, R., Complete and atomic algebras of the infinite-valued Lukasiewicz logic, unpublished paper.Google Scholar
6.Cignoli, R., Nola, A. Di and Lettieri, A., Priestley duality and quotient lattices of many-valued algebras, Rend. Circ. Matem. Palermo, to appear.Google Scholar
7.Hoo, C. S., Mv-algebras, ideals and semisimplicity, Math. Japon 34 (1989), 563583.Google Scholar
8.Swany, U. Maddana and Rajn, D. Viswanadha, A note on maximal ideal spaces of distributive lattices, Bull. Calcutta Math. Soc., 80 (1988) 8490.Google Scholar
9.Martinez, N. G., Priestley duality for Wajesberg algebras, Studia Logica, 49 (1990), 3146.CrossRefGoogle Scholar
10.Mundici, D., Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Functional Analysis 65 (1986) 1563.CrossRefGoogle Scholar
11.Rodriguez, A. J., Un estudio algebraico de los calculos proposicionales de Lukasiewicz, thesis, Universidad de Barcelona, 1980.Google Scholar
12.Romanoskwa, A. and Traczyk, T., On commutative BCK-algebras, Math. Japon 25 (1980), 567583.Google Scholar