Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T03:31:38.835Z Has data issue: false hasContentIssue false

STABILITY OF GORENSTEIN FLAT CATEGORIES

Published online by Cambridge University Press:  09 December 2011

GANG YANG
Affiliation:
School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China e-mail: [email protected]
ZHONGKUI LIU
Affiliation:
College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, P.R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A left R-module M is called two-degree Gorenstein flat if there exists an exact sequence of Gorenstein flat left R-modules ⋅⋅⋅ → G2G1G0G−1G−2 → ⋅⋅⋅ such that M ≅ Ker(G0G−1) and it remains exact after applying HR- for any Gorenstein injective right R-module H. In this paper we first give some characterisations of Gorenstein flat objects in the category of complexes of modules and then use them to show that two notions of the two-degree Gorenstein flat and the Gorenstein flat left R-modules coincide when R is right coherent.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Avramov, L. L. and Foxby, H. B., Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), 129155.CrossRefGoogle Scholar
2.Bennis, D., Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra 37 (2009), 855868.CrossRefGoogle Scholar
3.Bennis, D. and Mahdou, N., Global Gorenstein dimensions, Proc. Am. Math. Soc. 138 (2010), 461465.CrossRefGoogle Scholar
4.Bouchiba, S. and Khaloui, M., Stability of Gorenstein flat modules, Glasgow Math. J. 54 (2012), 169175.CrossRefGoogle Scholar
5.Christensen, L. W., Gorenstein dimensions, in Lecture notes in mathematics, vol. 1747 (Springer-Verlag, Berlin, 2000).Google Scholar
6.Christensen, L. W., Frankild, A. and Holm, H., On Gorenstein projective, injective and flat dimensions-A functorial description with applications, J. Algebra 302 (2006), 231279.CrossRefGoogle Scholar
7.Enochs, E. E. and García Rozas, J. R., Tensor products of complexes, Math. J. Okayama Univ. 39 (1997), 1739.Google Scholar
8.Enochs, E. E. and García Rozas, J. R., Flat covers of complexes, J. Algebra 210 (1998), 86102.CrossRefGoogle Scholar
9.Enochs, E. E., Jenda, O. M. G. and Torrecillas, B., Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), 19.Google Scholar
10.Enochs, E. E. and Jenda, O. M. G., Gorenstein injective and projective modules, Math. Z. 220 (4) (1995), 611633.CrossRefGoogle Scholar
11.Enochs, E. E. and Jenda, O. M. G., Gorenstein injective and flat dimensions, Math. Japon. 44 (1996), 261268.Google Scholar
12.Enochs, E. E. and Jenda, O. M. G., Relative homological algebra, in De Gruyter expositions in mathematics, vol. 30 (Kegel, O. H., Maslov, V. P., Neumann, W. D., Wells, R. O. Jr., Editors) (Walter De Gruyter, New York, 2000), 167256.Google Scholar
13.Enochs, E. E., Jenda, O. M. G. and Xu, J. Z., Orthogonality in the category of complexes, Math. J. Okayama Univ. 38 (1) (1996), 2546.Google Scholar
14.García Rozas, J. R., Covers and envelopes in the category of complexes of modules (Boca Raton, London, 1999).Google Scholar
15.Gillespie, J. and Hovey, M., Gorenstein model structures and generalized derived categories, Proc. Edinb. Math. Soc. 53 (2010), 697729.CrossRefGoogle Scholar
16.Holm, H., Rings with finite Gorenstein injective dimension, Proc. Am. Math. Soc. 132 (5) (2003), 12791283.CrossRefGoogle Scholar
17.Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167193.CrossRefGoogle Scholar
18.Holm, H., Gorenstein derived functors, Proc. Am. Math. Soc. 132 (7) (2004), 19131923.CrossRefGoogle Scholar
19.Iacob, A., Gorenstein flat dimension of complexes, J. Math. Kyoto Univ. 49 (4) (2009), 817842.Google Scholar
20.Iacob, A. and Iyengar, S. B., Homological dimensions and regular rings, J. Algebra 322 (2009), 34513458.CrossRefGoogle Scholar
21.Sather-Wagstaff, S., Sharif, T. and White, D., Stability of Gorenstein categories, J. Lond. Math. Soc. 77 (2) (2008), 481502.CrossRefGoogle Scholar
22.Sather-Wagstaff, S., Sharif, T. and White, D., AB-contexts and stability for Gorenstein flat modules with respect to semi-dualizing modules, Algebr. Represent. Theory 14 (3) (2011), 403428.CrossRefGoogle Scholar
23.Yang, G. and Liu, Z. K., Gorenstein flat covers over GF-closed rings, Comm. Algebra to appear, available at http://202.201.18.40:8080/mas5/labs/home.jsp?id=135Google Scholar