We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
Hostname: page-component-669899f699-vbsjw
Total loading time: 0
Render date: 2025-04-26T18:28:24.677Z
Has data issue: false
hasContentIssue false
Institute of Mathematics, Romanian Academy, P.O. Box 1–764, RO–014700 Bucharest, Romania and Université Louis Pasteur, Mathématique, 7, rue René Descartes, 67084 Strasbourg, France e-mail: [email protected]
FLORIAN LUCA (MORELIA)
Affiliation:
Instituto de Matemáticas, Universidad Autónoma de México, C.P. 58089, Morelia, Michoácan, México e-mail: [email protected]
MAURICE MIGNOTTE (STRASBOURG)
Affiliation:
Université Louis Pasteur, Mathématique, 7, rue René Descartes, 67084 Strasbourg, France e-mail: [email protected]
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the only solutions in coprime positive integers to the equationare (x, y, z)=(n!–2, 1, 1, n), n≥3.
1.Bugeaud, Y.Linear forms in p-adic logarithms and the Diophantine equation (xn - 1)/(x-1) = yq, Math. Proc. Cambridge Philos. Soc.127 (1999), 373–381.CrossRefGoogle Scholar
2
2.Bugeaud, Y. and Laurent, M.Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Th.61 (1996), 311–342.CrossRefGoogle Scholar
3
3. F. Luca, M. Mignotte and Y. Roy, On the equation . Glasgow. Math. J. 42 (2000), 351–357.Google Scholar