Published online by Cambridge University Press: 18 May 2009
Walker [11] describes a new class of translation planes W(q) of order q2, q ≡ 5(mod 6), with kernel GF(q). A plane in this class has several interesting properties, but we shall be only interested in the following ones possessed by its collineation group G: (i) G is transitive on the affine points of W(q), and (ii) G fixes a point the line at infinity of W(q), and is transitive on the other points of l∞ The smallest member of this class, W(5), also satisfies: (iii) for an affine point the subgroup G is transitive on the affine points ≠ of the line Note also that since W(5) is a translation plane, replacing G with G in (ii) we get a fourth property, call it (iv), satisfied by G. (See Lemma 2.)