Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T12:50:18.223Z Has data issue: false hasContentIssue false

SCALAR BOUNDEDNESS OF VECTOR-VALUED FUNCTIONS

Published online by Cambridge University Press:  12 December 2011

MATÍAS RAJA
Affiliation:
Departamento de Matemáticas, Facultad de Matemáticas, Universidad de Murcia, 30100 Espinardo (Murcia), Spain e-mail: [email protected]
JOSÉ RODRÍGUEZ
Affiliation:
Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide sufficient conditions for a Banach space-valued function to be scalarly bounded, which do not require to test on the whole dual space. Some applications in vector integration are also given.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Abrahamsen, T. A., Nygaard, O. and Põldvere, M., On weak integrability and boundedness in Banach spaces, J. Math. Anal. Appl. 314 (1) (2006), 6774.Google Scholar
2.Cascales, B. and Rodríguez, J., The Birkhoff integral and the property of Bourgain, Math. Ann. 331 (2) (2005), 259279.Google Scholar
3.Diestel, J. and Uhl, J. J. Jr., Vector measures, Math. Surveys, No. 15 (American Mathematical Society, Providence, RI, 1977).Google Scholar
4.Edgar, G. A., Measurability in a Banach space, Indiana Univ. Math. J. 26 (4) (1977), 663677.Google Scholar
5.Edgar, G. A., Measurability in a Banach space II, Indiana Univ. Math. J. 28 (4) (1979), 559579.Google Scholar
6.Fabian, M., Habala, P., Hájek, P., Santalucía, V. Montesinos, Pelant, J. and Zizler, V., Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 8 (Springer-Verlag, New York, 2001).Google Scholar
7.Fonf, V. P., Weakly extremal properties of Banach spaces, Mat. Zametki 45 (6) (1989), 8392, 112 (English translation: Math. Notes 45(5–6) (1989), 488–494).Google Scholar
8.Fonf, V. P., On exposed and smooth points of convex bodies in Banach spaces, Bull. Lond. Math. Soc. 28 (1) (1996), 5158.Google Scholar
9.Fremlin, D. H., The McShane and Birkhoff integrals of vector-valued functions, University of Essex Mathematics Department Research Report 92-10, version of 18.05.07 available at http://www.essex.ac.uk/maths/people/fremlin/preprints.htmGoogle Scholar
10.Gulisashvili, A. B., Estimates for the Pettis integral in interpolation spaces, and a generalization of some imbedding theorems, Soviet Math., Dokl. 25 (1982), 428432.Google Scholar
11.Musiał, K., Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1) (1991), 177262.Google Scholar
12.Musiał, K., Pettis integral, in Handbook of measure theory, Vol. I, II (Pap, E., Editor) (North-Holland, Amsterdam, 2002), 531586.Google Scholar
13.Nygaard, O., Thick sets in Banach spaces and their properties, Quaest. Math. 29 (1) (2006), 5972.Google Scholar
14.Riddle, L. H. and Saab, E., On functions that are universally Pettis integrable, Illinois J. Math. 29 (3) (1985), 509531.Google Scholar
15.Rodríguez, J., The Bourgain property and convex hulls, Math. Nachr. 280 (11) (2007), 13021309.Google Scholar
16.Rodríguez, J. and Vera, G., Uniqueness of measure extensions in Banach spaces, Studia Math. 175 (2) (2006), 139155.Google Scholar
17.Talagrand, M., Pettis integral and measure theory, Mem. Am. Math. Soc. 51 (307) (1984).Google Scholar