No CrossRef data available.
Article contents
Polynomially bounded multisequences and analytic continuation
Published online by Cambridge University Press: 18 May 2009
Extract
Given a polynomially bounded multisequence {fm}, where m = (m1, …, mk) ∈ ℤk, we will consider 2k power series in exp(iz1), …, exp(izk), each representing a holomorphic function within its domain of convergence. We will consider this same multisequence as a linear functional on a class of functions defined on the k-dimensional torus by a Fourier series, , with the proper convergence criteria. We shall discuss the relationships that exist between the linear functional properties of the multisequence and the analytic continuation of the holomorphic functions. With this approach we show that a necessary and sufficient condition that the multisequence be given by a polynomial is that each of the power series represents, up to a unit factor, the same function that is entire in the variables
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1982