Published online by Cambridge University Press: 18 May 2009
Recently H.-E. Richert [10] introduced a new method of summability, for which he completely solved the “summability problem” for Dirichlet series, and which led also to an extension of our knowledge of the relations between the abscissae of ordinary and absolute Rieszian summability. This non-linear method, which may best be characterized by the notion “strong Rieszian summability” †, depends on three parameters, on the order k;, the type λ, and the index p;. While Richert's paper deals almost exclusively with the application of that method of summability in a specialized form (namely the case p = 2, λn=log n) to Dirichlet series, it is the object of the present paper, to consider the general theory of strong Rieszian summability.