Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-03T20:39:51.989Z Has data issue: false hasContentIssue false

On Strong and Absolute Summability

Published online by Cambridge University Press:  18 May 2009

D. Borwein
Affiliation:
St. Salvator's College, University of St. Andrews
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose throughout that λ > 0, κ > - l. γ is real and that

The series is said to be

(i) summable (C, k) to s if

(ii) strongly summable (C, k + 1) with index λ, or summable |C, k + 1|λ, to s if

(iii) absolutely summable (C, k) with indices γ, λ, or summable |C, k + 1|λ, if

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1960

References

1.Borwein, D., Theorems on some methods of summability, Quart. J. of Math. (2), 9 (1958), 310316.CrossRefGoogle Scholar
2.Chow, H. C., A further note on the summability of a power series on its circle of convergence, Ann. Acad. Sinica, 1 (1954), 559567.Google Scholar
3.Flett, T. M., On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3), 7 (1957), 113141.CrossRefGoogle Scholar
4.Flett, T. M., Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc. (3), 8 (1958), 357387.CrossRefGoogle Scholar
5.Flett, T. M., Some remarks on strong summability, Quart. J. of Math. 10 (1959), 115139.CrossRefGoogle Scholar
6.Glatfeld, M., On strong Rieszian summability, Proc. Glasgow Math. Assoc. 3 (1957), 123131.CrossRefGoogle Scholar
7.Hardy, G. H., Divergent series (Oxford, 1949).Google Scholar
8.Hardy, G. H. and Littlewood, J. E., Some theorems concerning Dirichlet's series, Messenger of Math. 43 (19131914), 134147.Google Scholar
9.Hardy, G. H., Littlewood, J. E. and Pólya, G., The maximum of a certain bilinear form, Proc. London Math. Soc. (2), 25 (1926), 265282.CrossRefGoogle Scholar
10.Hausdorff, F., Die Äquivalenz der Hölderschen und Cesàroschen Grenzwerte negativer Ordnung, Math. Z., 31 (1930), 186196.CrossRefGoogle Scholar
11.Hyslop, J. M., Note on the strong summability of series, Proc. Glasgow Math. Assoc. 1 (19511953), 1620.CrossRefGoogle Scholar
12.Knopp, K. and Lorentz, G. G., BeitrÄge zur absoluten Limitierung Archiv. der Math. 2 (1949), 1016.CrossRefGoogle Scholar
13.Kuttner, B., Note on strong summability, J. London Math. Soc. 21 (1946), 118122.Google Scholar
14.Morley, H., A theorem on Hausdorff transformations and its application to Cesàro and Hölder means, J. London Math. Soc. 25 (1950), 168173.CrossRefGoogle Scholar
15.Rogosinski, W. W., On Hausdorff methods of summability, Proc. Cambridge Phil. Soc. 38 (1942), 166192.CrossRefGoogle Scholar
16.Zygmund, A., Remarque sur la sommabilité des séries de fonctions orthogonales, Bull, de l'Acad. Pol. Serie A, (1926), 185191.Google Scholar