Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T09:39:20.506Z Has data issue: false hasContentIssue false

ON CRYSTAL OPERATORS IN LUSZTIG'S PARAMETRIZATIONS AND STRING CONE DEFINING INEQUALITIES

Published online by Cambridge University Press:  02 August 2012

SHMUEL ZELIKSON*
Affiliation:
LMNO, UMR 6139 du CNRS, Département de Mathématiques, Université de Caen, B.P. 5186, 14032 Caen Cedex, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let w0 be a reduced expression for the longest element of the Weyl group, adapted to a quiver of type An. We compare Lusztig's and Kashiwara's (string) parametrizations on canonical basis associated with w0. Crystal operators act in a finite number of patterns in Lusztig's parametrization, which may be seen as vectors. We show that this set gives the system of defining inequalities of the string cone constructed by Gleizer and Postnikov (O. Gleizer and A Postnikov, Littlewood–Richardson coefficients via Yang–Baxter equation, IMRN14 (2000) 741–774). We use combinatorics of the Auslander–Reiten quivers, and as a by-product we get an alternative enumeration of a set of inequalities defining the string cone based on hammocks.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2012

References

REFERENCES

1.Auslander, M., Reiten, I. and Smalo, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, no. 36 (Cambridge University Press, Cambridge, UK, 1995).CrossRefGoogle Scholar
2.Bedard, R., On commutation classes of reduced words in Weyl groups, Eur. J. Comb. 20 (1999), 483505.Google Scholar
3.Berenstein, A. and Zelevinsky, A., String bases for quantum groups of type Ar; I. M. Gelfand Seminar, Adv. Soviet Math. 16 (part 1) (1993), 5189.Google Scholar
4.Berenstein, A. and Zelevinsky, A., Tensor product multiplicities, canonical bases, and totally positive varieties, Invent. Math. 143 (2001), 77128.CrossRefGoogle Scholar
5.Bernstein, I. N., Gelfand, I. M. and Ponomarev, V. A., Coxeter functors and Gabriel's theorem, Russ. Math. Surv. 28 (1973), 1732.CrossRefGoogle Scholar
6.Brenner, S., A combinatorial characterisation of finite Auslander-Reiten quivers, in Representation theory I. Finite dimensional algebras (Dlab, V., Gabriel, P., Michler, G., Editor), Springer LNM 1177, (Springer, New York, 1986), 1349.CrossRefGoogle Scholar
7.De Graaf, W., Quagroup: A GAP4 package for doing computations with quantum groups (2003), available at http://www.science.unitn.it/degraaf/quagroup.html.Google Scholar
8.The GAP Group, GAP – groups, algorithms, and programming, version 4.4.12, 2008, available at http://www.gap-system.orgGoogle Scholar
9.Gabriel, P., Auslander-Reiten sequences and representation-finite algebras; in Representation theory I, Proceedings of Workshop, Carleton University, Ottawa, Canada, 1979, Springer Lecture Notes in Mathematics 831 (Springer, Berlin, Germany, 1980), 171.Google Scholar
10.Gleizer, O. and Postnikov, A., Littlewood-Richardson coefficients via Yang-Baxter equation, IMRN 14 (2000), 741774.Google Scholar
11.Joseph, A., Quantum groups and their primitive ideals (Springer, Berlin, Germany, 1993).Google Scholar
12.Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465516.CrossRefGoogle Scholar
13.Kashiwara, M., The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), 839858.Google Scholar
14.Littelmann, P., Cones, crystals and patterns, Transf. Gr. 3 (1998), 145179.Google Scholar
15.Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc. 3 (1990), 447498.Google Scholar
16.Lusztig, G., Introduction to quantum groups, Progress in Mathematics, no. 110 (Birkhauser, Boston, MA, 1993).Google Scholar
17.Postnikov, A., Total positivity, Grassmannians, and networks, Preprint, available at http://www-math.mit.edu/~apost/papers/tpgrass.pdf, 2006.Google Scholar
18.Reineke, M., On the coloured graph structure of Lusztig's canonical basis, Math. Ann. 307 (1997), 705723.CrossRefGoogle Scholar
19.Ringel, C. M., Hall algebras, in Topics in Algebra, 26 (Banach Center, Poland, 1990), 433447.Google Scholar
20.Ringel, C. M., Hall algebras and quantum groups, Invent. Math. 101 (1990), 583592.Google Scholar
21.Ringel, C. M., PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 5188.Google Scholar
22.Zelikson, S., Auslander-Reiten quivers and the Coxeter complex, Alg. Rep. Th. 8 (2005), 3555.Google Scholar