Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:31:42.227Z Has data issue: false hasContentIssue false

The normal curvature of totally real submanifolds of S6(1)

Published online by Cambridge University Press:  18 May 2009

P. J. De Smet
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
F. Dillen
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
L. Verstraelen
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
L. Vrancken
Affiliation:
Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the pointwise inequality 0 ≥ ρ + ρ – 1 involving the normalized scalar curvature ρ and normal scalar curvature ρ of a totally real 3-dimensional submanifold of the nearly Kaehler 6-sphere. Further we classify submanifolds realizing the equality in this inequality.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

1.Bolton, J., Vrancken, L. and Woodward, L. M., On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), 407–,427.CrossRefGoogle Scholar
2.Calabi, E., Construction and properties of some 6-dimensional almost complex manifolds, Trans. Amer. Math. Soc. 87 (1958), 407438.CrossRefGoogle Scholar
3.Chen, B. Y., Some pinching and classification theorems for minimal submanifolds, Arch Math. (Basel) 60 (1993), 568578.Google Scholar
4.Chen, B. Y., Mean curvature and shape operator of isometric immersions in real-space-forms, Glasgow Math. J. 38 (1996), 8797.CrossRefGoogle Scholar
5.Chen, B.-Y., Dillen, F., Verstraelen, L. and Vrancken, L., Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization, Japanese J. Math. (N.S.) 21 (1995), 207222.CrossRefGoogle Scholar
6.Chen, B. Y., Dillen, F., Verstraelen, L. and Vrancken, L., Characterizing a class of totally real submanifolds of S6(l) by their sectional curvatures, Tōhoku Math. J. 47 (1995), 185198.Google Scholar
7.De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L., A pointwise inequality in submanifold theory (1996), Arch. Math. (Brno), to appear.Google Scholar
8.Dillen, F., Verstraelen, L. and Vrancken, L., Classification of totally real 3-dimensional submanifolds of S6(1) with K ≥ 1/16; J. Math. Soc. Japan 42 (1990), 565584.CrossRefGoogle Scholar
9.Dillen, F. and Vrancken, L., Totally real Submanifolds in S 6 satisfying Chen's Equality, Trans. Amer. Math. Soc. 348 (1996), 16331646.Google Scholar
10.Ejiri, N., Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759763.CrossRefGoogle Scholar
11.Guadalupe, I. V. and Rodriguez, L., Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983), 95103.CrossRefGoogle Scholar
12.Vrancken, L., Locally symmetric submanifolds of the nearly Kaehler S 6, Algebras, Groups and Geometries 5 (1988), 369394.Google Scholar
13.Wintgen, P., Sur l'inégalité de Chen-Willmore, C. R. Acad. Sc. Paris 288 (1979), 993995.Google Scholar