Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T21:14:53.770Z Has data issue: false hasContentIssue false

KERNELS OF REPRESENTATIONS AND COIDEAL SUBALGEBRAS OF HOPF ALGEBRAS

Published online by Cambridge University Press:  02 August 2011

SEBASTIAN BURCIU*
Affiliation:
Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei Street, Bucharest, Romania and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, 014700, Romania e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define left and right kernels of representations of Hopf algebras. In the case of group algebras, left and right kernels coincide and they are the usual kernels of modules. In the general case, we show that these kernels coincide with the categorical left and right Hopf kernels of morphisms of Hopf algebras defined in Andruskiewitsch and Devoto [Extensions of Hopf algebras, Algebra i Analiz7 (1995), 22–69]. Brauer's theorem for kernels over group algebras is generalised to Hopf algebras.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Andruskiewitsch, N., Extensions of Hopf algebras, Can. J. Math. 48 (1) (1996), 342.CrossRefGoogle Scholar
2.Andruskiewitsch, N. and Devoto, J., Extensions of Hopf algebras, Algebra i Analiz 7 (1995), 2269.Google Scholar
3.Banica, T. and Bichon, J., Hopf images and inner faithful representations, Glasgow Math. J. 52 (2010), 677703.CrossRefGoogle Scholar
4.Boltje, R. and Kuelshammer, B., On the depth 2 condition for group algebra and Hopf algebra extensions, J. Algebra 323 (6) (2009), 17831796.CrossRefGoogle Scholar
5.Burciu, S., Normal Hopf subalgebras of semisimple Hopf algebras, Proc. Amer. Math. Soc. 137 (12) (2009), 39693979.CrossRefGoogle Scholar
6.Burciu, S., Kadison, L. and Kuelshammer, B., On subgroup depth, Int. Electron. J. Algebra 9 (2011), 133166.Google Scholar
7.Etingof, P. and Gelaki, S., On the exponent of finite dimensional Hopf Algebras, Math. Res. Lett. 6 (2) (1999), 131140.CrossRefGoogle Scholar
8.Etingof, P. and Ostrik, V., Finite tensor categories, Moscow J. Math. 4 (3) (2004), 627654.CrossRefGoogle Scholar
9.Isaacs, I. M., Character theory of finite groups, in Pure and Applied Mathematics, Vol. 69 (Academic Press, New York/London, 1976).Google Scholar
10.Masuoka, A., Semisimple Hopf algebras of dimension 2p, Commun. Algebra 23 (5) (1995), 19311940.CrossRefGoogle Scholar
11.Montgomery, S., Hopf algebras and their actions on rings, in CBMS regional conference series in mathematics, Vol. 82 (American Mathematical Society, Providence, RI, 1993).Google Scholar
12.Passman, D. S. and Quinn, D., Burnside's theorem for Hopf algebras, Proc. Amer. Math. Soc 123 (1995), 327333.Google Scholar
13.Rieffel, M., Burnside's theorem for representations of Hopf algebras, J. Algebra 6 (1967), 123130.CrossRefGoogle Scholar
14.Rieffel, M., Normal subrings and induced representations, J. Algebra 24 (1979), 264386.Google Scholar
15.Skryabin, Y., Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc 359 (6) (2007), 25972623.CrossRefGoogle Scholar
16.Takeuchi, M., Quotient spaces for Hopf algebras, Commun. Alg. 22 (7) (1995), 25032523.CrossRefGoogle Scholar
17.Waterhouse, W. C., Introduction to affine group schemes, Vol. 69 (Springer-Verlag, Berlin, 1979).CrossRefGoogle Scholar