Published online by Cambridge University Press: 18 May 2009
For a single space curve (that is, a smooth curve embedded in ℝ3) much geometrical information is contained in the dual and the focal set of the curve. These are both (singular) surfaces in ℝ3, the dual being a model of the set of all tangent planes to the curve, and the focal set being the locus of centres of spheres having at least 3-point contact with the curve. The local structures of the dual and the focal set are (for a generic curve) determined by viewing them as (respectively) the discriminant of a family derived from the height functions on the curve, and the bifurcation set of the family of distance-squared functions on the curve. For details of this see for example [6, pp. 123–8].