Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-02T23:27:04.798Z Has data issue: false hasContentIssue false

Essential normal and conjugate extensions of inverse semigroups

Published online by Cambridge University Press:  18 May 2009

Francis Pastijn
Affiliation:
Dienst Hogere Meetkunde, Rijksuniversiteit te Gent, Krijgslaan 281, B-9000 Gent, Belguim
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the following we use the notation and terminology of [6] and [7]. If S is an inverse semigroup, then Es denotes the semilattice of idempotents of S. If a is any element of the inverse semigroup, then a−1 denotes the inverse of a in S. An inverse subsemigroup S of an inverse semigroup S′ is self-conjugate in S′ if for all x ∈ S′,x−1SxS; if this is the case, S′ is called a conjugate extension of S. An inverse subsemigroup S of S′ is said to be a full inverse subsemigroup of S′ if Es = Es′. If S is a full self-conjugate inverse subsemigroup of the inverse semigroup S′, then S is called a normal inverse subsemigroup of S′, or, S′ is called a normal extension of S.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1982

References

REFERENCES

1.Allouch, D., Sur les extensions de demi-groupes strictement réguliers, Doctoral dissertation, Université de Montpellier (1979).Google Scholar
2.Gluskin, L. M., On dense embeddings, Trudy Moskov. Mat. Ob˘˘c. 29 (1973), 119131 (Russian).Google Scholar
3.Gluskin, L. M., and Schein, B. M., Ideal extensions of irreductive semigroups, Semigroup Forum 9 (1974), 216240.CrossRefGoogle Scholar
4.Hall, T. E., Free products with amalgamation of inverse semigroups, J. Algebra 34 (1975), 375385.CrossRefGoogle Scholar
5.Hall, T. E., Amalgamation and inverse and regular semigroups, Trans. Amer. Math. Soc. 246 (1978), 395406.CrossRefGoogle Scholar
6.Howie, J. M., An introduction to semigroup theory (Academic Press, 1976).Google Scholar
7.Petrich, M., Introduction to semigroups (Merrill, Columbus, 1973).Google Scholar
8.Petrich, M., Extensions normales de demi-groupes inverses (submitted).Google Scholar
9.Petrich, M., The conjugate hull of an inverse semigroup, Glasgow Math. J. 21 (1980), 103124.CrossRefGoogle Scholar
10.Scheiblich, H. E., Kernels of inverse semigroup homomorphisms, J. Austral. Math. Soc. 18 (1974), 289292.CrossRefGoogle Scholar
11.Ševrin, L. N., Densely embedded ideals in semigroups, Mat. Sb. 79 (1969), 425432 (Russian).Google Scholar