Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T19:55:12.188Z Has data issue: false hasContentIssue false

Construction of semiabelian Galois extensions

Published online by Cambridge University Press:  18 May 2009

Michael Stoll
Affiliation:
Mathematisches Institut Der UniversitätBeringstr. 4, D-53115 Bonn, 〈[email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper shows how to construct Galois field extensions of Hilbertian fields with a given group out of some subclass (called ‘semiabelian groups’ by Matzat [2]) of all soluble groups as Galois group. This is done in a fairly explicit way by constructing polynomials whose Galois groups are universal in the sense that every group in the above subclass is obtained as a quotient of some of them.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1995

References

REFERENCES

1.Dentzer, Ralf, On split embedding problems with abelian kernel, Preprint 91–10, Interdisziplinäres Zentrum für wissenschaftliches Rechnen, Universität Heidelberg (1991).Google Scholar
2.Matzat, B. Heinrich, Der Kenntnisstand in der konstruktiven Galoisschen Theorie, Preprint 90–18, Interdisziplinäres Zentrum für wissenschaftliches Rechnen, Universität Heidelberg (1990), or: PM 95 (1991), 6598, Birkhäuser-Verlag.Google Scholar
3.Odoni, R. W. K., The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3), 51 (1985), 385414.CrossRefGoogle Scholar
4.Odoni, R. W. K., Realising wreath products of cyclic groups as Galois groups, Mathematika 35 (1988), 101113.CrossRefGoogle Scholar
5.Stoll, Michael, Galois groups over of some iterated polynomials, Arch. Math. 59 (1992), 239244.CrossRefGoogle Scholar