No CrossRef data available.
Published online by Cambridge University Press: 18 May 2009
The notion of a group G having periodic cohomology after k steps was introduced by Talelli in [10], and is equivalent to having the functors Hm(G, —) and Hm+q(G, —) naturally isomorphic for some q ≥ 1 and all m ≥k + 1. It extends to infinite groups the long-understood phenomenon of cohomological periodicity for finite groups (for which k = 0).