Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T06:15:58.227Z Has data issue: false hasContentIssue false

Morphological assessment of the earliest paradoxidid trilobites (Cambrian Series 3) from Morocco and Spain

Published online by Cambridge University Press:  19 June 2017

J. JAVIER ÁLVARO*
Affiliation:
Instituto de Geociencias (CSIC-UCM) and Departamento de Paleontología (UCM), José Antonio Novais 12, 28040 Madrid, Spain
JORGE ESTEVE
Affiliation:
Instituto de Geociencias (CSIC-UCM) and Departamento de Paleontología (UCM), José Antonio Novais 12, 28040 Madrid, Spain
SAMUEL ZAMORA
Affiliation:
Instituto Geológico y Minero de España, Manuel Lasala 44, 9°B, 50006 Zaragoza, Spain
*
Author for correspondence: [email protected]

Abstract

A Cambrian immigration event of paradoxidid trilobites has traditionally marked some regional lower–middle Cambrian boundaries in the Acado-Baltic subprovince (including Baltica and the Mediterranean and Avalonian margins of West Gondwana). The earliest paradoxidine species in Morocco and the Iberian Peninsula have been used as a chronostratigraphic link to support the definition of a common base for the Cambrian Series 3, but recent studies have proposed new species without revising previously established ones. This paper offers a morphological statistical analysis based on both linear measurement and landmark-based geometric morphometric approaches performed on the earliest paradoxinine trilobites sampled in the Anti-Atlas (Morocco) and the Iberian Chains (Spain). As a result, the diagnosis of Acadoparadoxides mureroensis is emended and several species recently erected in Morocco (A. cf. mureroensis, A. levisettii, A. ovatopyge and A. pampalius) are suggested as synonyms of A. mureroensis until 3D statistical analyses are available based on material preserved on carbonate or silica nodules. The first appearance of A. mureroensis in both areas can be provisionally used for regional correlation until homotaxic tests are checked.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. 2004. Image processing with ImageJ. Biophotonics International 11 (7), 3642.Google Scholar
Álvaro, J. J. 2007. New ellipsocephalid trilobites from the lower Cambrian member of the Láncara Formation, Cantabrian Mountains, northern Spain. Memoirs of the Association of Australasian Palaeontologists 34, 2941.Google Scholar
Álvaro, J J. 2014. Rift, pull-apart rift, and continental drift crossword puzzles across the lower–middle Cambrian transition of Iberia and Morocco. GFF 136 (1), 25.Google Scholar
Álvaro, J. J., Benziane, F., Thomas, A. R., Walsh, G. J. & Yazidi, A. 2014. Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. Journal of African Earth Sciences 98, 1933.Google Scholar
Álvaro, J. J. & Clausen, S. 2005. Major geodynamic and sedimentary constraints on the chronostratigraphic correlation of the Lower–Middle Cambrian transition in the western Mediterranean region. Geosciences Journal 9, 145–60.Google Scholar
Álvaro, J. J. & Clausen, S. 2006. Microbial crusts as indicators of stratigraphic diastems in the Cambrian Micmacca Breccia, Moroccan Atlas. Sedimentary Geology 185, 255–65.Google Scholar
Álvaro, J. J. & Clausen, S. 2008. Paleoenvironmental significance of Cambrian hiatal shell accumulations in an aborted intra-cratonic rift, Atlas Mountains, Morocco. In Dynamics of Epeiric Seas (ed. Pratt, B. R. & Holmden, C.), pp. 3954. Geological Association of Canada, Special Paper no. 48.Google Scholar
Álvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A. & Shergold, J. H. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 535.Google Scholar
Álvaro, J. J., Ezzouhairi, H., Clausen, S., Ribeiro, M. L. & Solá, R. 2015. Syn-rift unconformities punctuating the lower–middle Cambrian transition of the Atlas Rift, Morocco. International Journal of Earth Sciences 104 (3), 752–73.Google Scholar
Álvaro, J. J., Gozalo, R., Liñán, E. & Sdzuy, K. 1993. The palaeogeography of northern Iberia at the Lower–Middle Cambrian transition. Bulletin de la Société Géologique de France 164, 843–50.Google Scholar
Álvaro, J. J. & Vennin, E. 1996. Tectonic control on Cambrian sedimentation in south-western Europe. Eclogae Geologica Helvetiae 89, 935–48.Google Scholar
Álvaro, J. J. & Vennin, E. 1997. Episodic development of Cambrian eocrinoid-sponge meadows in the Iberian Chains (NE Spain). Facies 37, 4964.Google Scholar
Álvaro, J. J., Vennin, E., Muñoz, A., Sánchez-Valverde, B. & Ojeda, J. L. 2000. Interplay of orbital forcing and tectonic pulses in the Cambrian Iberian platform, NE Spain. International Journal of Earth Sciences 89, 366–76.Google Scholar
Barrande, J. 1852. Système Silurien du centre de la Bohême. Ière partie. Prague and Paris: Recherches Paléontologiques, 935 pp.Google Scholar
Bergström, J. & Levi-Setti, R. 1978. Phenotypic variation in the Middle Cambrian trilobite Paradoxides davidis Salter at Manuels, SE Newfoundland. Geologica et Palaeontologica 12, 140.Google Scholar
Bondon, J. & Neltner, L. 1933. Sur la série cambrienne des plateaux de Drâa (Sud Marocain) et la présence du Géorgien dans cette série. Comptes Rendus de l'Académie des Sciences, Paris 197, 170–2.Google Scholar
Bookstein, F. L. 1991. Morphometric Tools for Landmark Data. New York: Cambridge University Press.Google Scholar
Briggs, D. E. G. & Williams, S. H. 1981. The restoration of flattened fossils. Lethaia 14, 157–64.Google Scholar
Brøgger, W. C. 1879. Om Paradoxidesskifrene ved Krekling. Nyt Magazin Naturvidenskap 24, 1888.Google Scholar
Brøgger, W. C. 1886. Om alderen af Olenelluszonen i Nordamerika. Geologiska Föreningens i Stockholm Förhandlingar 8, 182213.Google Scholar
Buggisch, W., Marzela, C. & Hügel, P. 1978. Die fazielle und paläogeographische Entiwocklung der infrakambrischen bis ordovizischen Sedimente im Mittleren Antiatlas um Agdz (S-Marokko). Geologische Rundschau 68, 195224.Google Scholar
Choubert, G. 1963. Histoire géologique du Précambrien de l'Anti-Atlas. Notes et Mémoires du Service Géologique du Maroc no. 162, 352 pp.Google Scholar
Clausen, S. & Álvaro, J. J. 2002. Encrusting strategies in a Cambrian nonreefal epibenthic community. Bulletin de la Société Géologique de France 173, 553–9.Google Scholar
Clausen, S., Álvaro, J. J. & Zamora, S. 2014. Replacement of benthic communities in two Neoproterozoic–Cambrian subtropical-to-temperate rift basins, High Atlas and Anti-Atlas, Morocco. Journal of African Earth Sciences 98, 7293.Google Scholar
Clausen, S. & Smith, A. B. 2008- Stem structure and biological affinities of a Cambrian problematic deuterostome (Stylophora). Nature 438, 351–4.Google Scholar
Cooper, R. A. 1970. Tectonic distortion of a syntype of Isograptus forcipiformis latus Ruedemann. Journal of Paleontology 44, 980–3.Google Scholar
Cooper, R. A. 1990. Interpretation of tectonically deformed fossils. New Zealand Journal of Geology and Geophysics 33, 321–32.Google Scholar
Dean, W. T. & Özgul, N. 1994. Cambrian rocks and faunas, Hüdai area, Taurus Mountains, southwestern Turkey. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 64, 520.Google Scholar
Destombes, J., Hollard, H. & Willefert, S. 1985. Lower Palaeozoic rocks of Morocco. In Lower Palaeozoic Rocks of the World, vol. 4: Lower Palaeozoic of North-Western and West Central Africa (ed. Holland, C. H.), pp. 57184. Chichester: John Wiley and Sons.Google Scholar
Dryden, I. L. & Mardia, K. V. 1998. Statistical Shape Analysis. New York: John Wiley & Sons, 347 pp.Google Scholar
Esteve, J. 2014. Intraspecific variability in paradoxidid trilobites from the Purujosa trilobite assemblage (middle Cambrian, northeast Spain). Acta Palaeontologica Polonica 59, 215–40.Google Scholar
Foote, M. 1991. Morphological patterns of diversification – examples from trilobites. Palaeontology 34, 461–8.Google Scholar
Geyer, G. 1988. Agnostida aus dem höheren Unterkambrium und dem Mittelkambrium von Marokko. Teil 2: Eodiscina. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 177, 93133.Google Scholar
Geyer, G. 1989. Late Precambrian to early Middle Cambrian lithostratigraphy of southern Morocco. Beringeria 1, 115–43.Google Scholar
Geyer, G. 1990. Revised Lower to lower Middle Cambrian biostratigraphy of Morocco. Newsletters on Stratigraphy 22, 5370.Google Scholar
Geyer, G. 1993. The giant Cambrian trilobites of Morocco. Beringeria 8, 71107.Google Scholar
Geyer, G. 1998. Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian. Canadian Journal of Earth Sciences 35, 374401.Google Scholar
Geyer, G. 2006. First African oryctocephalid trilobites from the Lower–Middle Cambrian boundary interval. Palaeoworld 15, 348–59.Google Scholar
Geyer, G. & Landing, E. (eds) 1995. Morocco’95. The Lower–Middle Cambrian Standard of Gondwana. Beringeria, Special Issue 2, 171 pp.Google Scholar
Geyer, G. & Landing, E. 2001. Middle Cambrian of Avalonian Massachusetts: stratigraphy and correlation of the Braintree trilobites. Journal of Paleontology 75, 116–35.Google Scholar
Geyer, G. & Landing, E. 2004. A unified Lower–Middle Cambrian chronostratigraphy for West Gondwana. Acta Geologica Polonica 54, 179218.Google Scholar
Geyer, G. & Landing, E. (eds) 2006. Ediacaran–Cambrian depositional environments and stratigraphy of the western Atlas regions. Beringeria, Special Issue 6, 120 pp.Google Scholar
Geyer, G. & Vincent, T. 2014. The Paradoxides puzzle resolved: the appearance of the oldest paradoxidines and its bearing on the Cambrian Series 3 lower boundary. Paläontologische Zeitschrift 89 (3), 335–98.Google Scholar
Goodall, C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, Series B: Methodological 53, 285339.Google Scholar
Gozalo, R., Dies Álvarez, M. E., Gámez Vintaned, J. A., Zhuravlev, A. Yu., Bauluz, B., Subías, I., Chirivella Martorell, J. B., Mayoral, E., Gursky, H. J., Andrés, J. A. & Liñán, E. 2013. Proposal of a reference section and point for the Cambrian Series 2–3 boundary in the Mediterranean subprovince in Murero (NE Spain) and its intercontinental correlation. Geological Journal 48, 142–55.Google Scholar
Gozalo, R., Liñán, E. & Díes, M. E. 2003. Intraspecific dimorphism and evolutionary series of paradoxidids from the Middle Cambrian of Murero, Spain. Special Papers in Palaeontology 70, 141–56.Google Scholar
Gozalo, R., Liñán, E., Dies Álvarez, M. E., Gámez Vintaned, J. A. & Mayoral, E. 2007. The Lower–Middle Cambrian boundary in the Mediterranean subprovince. In The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision (ed. Linnemann, U., Nance, R. D., Kraft, P. & Zulauf, G.), pp. 359–73. Geological Society of America, Special Paper no. 423.Google Scholar
Hammer, Ø. & Harper, D. A. T. 2006. Paleontological Data Analysis. Oxford: Blackwell.Google Scholar
Hawle, I. & Corda, A. J. C. 1847. Prodom einer Monographie der böhmischen Trilobiten. Abhandlungen der Königlichen Nöhmischen Gesselschaft der Wissenschaften 5, 1176.Google Scholar
Hopkins, M. J. & Webster, M. 2009. Ontogeny and geographic variation of a new species of the corynexochine trilobite Zacanthopsis (Dyeran, Cambrian). Journal of Paleontology 83 (4), 524–47.Google Scholar
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology 19, 913–16.Google Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology 79, 189.Google Scholar
Hughes, N. C. & Jell, P. A. 1992. A statistical/computer-graphic technique for assessing variation in tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia 25, 317–30.Google Scholar
Hughes, N. C. & Jell, P. A. 1999. The biostratigraphy and biogeography of Himalayan Cambrian trilobites. In Himalaya and Tibet: Mountain Roots to Mountain Tops (ed. Macfarlane, A., Sorkhabi, R. B. & Quade, J.), pp. 109–16. Geological Society of America, Special Paper no. 328.Google Scholar
Hughes, N. C. & Rushton, A. W. A. 1990. Computer-aided restoration of a Late Cambrian ceratopygid trilobite from Wales, and its phylogenetic implications. Palaeontology 33, 429–45.Google Scholar
Hupé, P. 1953. Contribution à l’étude du Cambrien inférieur et du Précambrien III de l'Anti-Atlas marocain. Notes et Mémoires du Service Géologique du Maroc no. 103, 402 pp.Google Scholar
Hupé, P. 1960. Sur le Cambrien inférieur du Maroc. Reports of the 21st Session of the International Geological Congress, Part VIII (Proceedings of Section 8), Copenhagen, 7585.Google Scholar
Jefferies, R. P. S., Lewis, M. & Donovan, S. K. 1987. Protocystites menevensis – a stem-group chordate (Cornuta) from the Middle Cambrian of South Wales. Palaeontology 30, 429–84.Google Scholar
Jell, P. A. & Hughes, N. C. 1997. Himalayan Cambrian trilobites. Special Papers in Palaeontology 58, 1113.Google Scholar
Kim, K., Sheets, D. H. & Mitchell, C. E. 2009. Geographic and stratigraphic change in the morphology of Triarthus beckii (Creen) (Trilobita): a test of Plus ça change model of evolution. Lethaia 42, 108–25.Google Scholar
Labandeira, C. C. & Hughes, N. C. 1994. Biometry of the Late Cambrian trilobite genus Dikelocephalus and its implications for trilobite systematics. Journal of Paleontology 68, 492517.Google Scholar
Liñán, E. & Gozalo, R. 1986. Trilobites del Cámbrico Inferior y Medio de Murero (Cordillera Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza 2, 1104.Google Scholar
Liñán, E., Perejón, A. & Sdzuy, K. 1993. The Lower–Middle Cambrian stages and stratotypes from the Iberian Peninsula: a revision. Geological Magazine 130, 817–33.Google Scholar
Lotze, F. 1961. Das Kambrium Spaniens. Teil I: Stratigraphie. Akademie der Wissenschaften und der Literatur Abhandlungen der Mathematisch-Natursissenschaftilichen Klasse (for 1961) 6, 381498.Google Scholar
Mardia, K. V., Kent, T. J. & Bibbly, J. M. 1994. Multivariate Analysis. London: Academic Press.Google Scholar
Nixon, K. & Wheeler, Q. D. 1990. An amplification of the phylogenetic species concept. Cladistics 6, 211–23.Google Scholar
Özdikmen, H. 2009. Nomenclatural changes for twenty trilobite genera. Munis Entomology & Zoology 4, 155–71.Google Scholar
Palmer, A. R. 1957. Ontogenic development of two olenellid trilobites. Journal of Paleontology 31, 105–28.Google Scholar
Peng, S. C., Babcock, L. E., Zhu, X. J., Ahlberg, P., Terfelt, F. & Dai, T. 2015. Intraspecific variation and taphonomic alteration in the Cambrian (Furongian) agnostoid Lotagnostus americanus: new information from China. Bulletin of Geosciences 90, 281306.Google Scholar
Rasetti, F. 1948. Lower Cambrian trilobites from the conglomerates of Quebec (exclusive of the Ptychopariidae). Journal of Paleontology 22, 124.Google Scholar
Rohlf, F. J. 1990. Rotational fit (Procrustes) methods. In Proceedings of the Michigan Morphometrics Workshop (ed. Rohlf, F. J. & Bookstein, F. L.), pp. 227–36. University of Michigan Museum of Zoology, Special Publication no. 2.Google Scholar
Sdzuy, K. 1958. Neue trilobiten aux dem Mittelkambrium von Spanien. Senckenbergiana lethaea 39, 235–53.Google Scholar
Sdzuy, K. 1961. Das Kambrium Spaniens. Teil II: Trilobiten. Akademie der Wissenschaften und der Literatur Abhandlungen der Mathematisch-Natursissenschaftilichen Klasse (for 1961) 7, 217312.Google Scholar
Sdzuy, K. 1966. An improved method of analysing distortion in fossils. Palaeontology 9, 125–34.Google Scholar
Sdzuy, K. 1967. Trilobites del Cámbrico medio de Asturias. Trabajos de Geología, Universidad de Oviedo 1, 77133.Google Scholar
Sdzuy, K. 1971 a. Acerca de la correlación del Cámbrico inferior en la Península Ibérica. I Congreso Hispano-Luso-Americano de Geología Económica, Geología 2, 753–66.Google Scholar
Sdzuy, K. 1971 b. La subdivisión bioestratigráfica y la correlación del Cámbrico medio en España. I Congreso Hispano-Luso-Americano de Geología Económica, Geología 2, 769–82.Google Scholar
Sdzuy, K. 1972. Das Kambrium der Acadobaltischen Faunenprovinz. Zentralblatt für Geologie und Paläontologie 2, 191.Google Scholar
Sheets, H. D. 2014. Integrated Morphometrics Package. Buffalo, NY: Canisius College.Google Scholar
Smith, A. B., Zamora, S. & Álvaro, J. J. 2013. The oldest echinoderm faunas from Gondwana show echinoderm body plan diversification was rapid. Nature Communications 4, 1385. doi: 10.1038/ncomms2391.Google Scholar
Šnajdr, M. 1957. O nových trilobitech z českého kambria. Vĕstník Ústrĕdního Ústavu Geologického 32, 235– 44.Google Scholar
Šnajdr, M. 1958. Trilobiti českého středního kambria. Rozpravy Ústředního Ústavu Geologického 24, 1174.Google Scholar
Šnajdr, M. 1986. Two new paradoxidid trilobites from the Jince Formation (Middle Cambrian, Czechoslovakia). Vĕstník Ústředního Ústavu Geologického 61, 169–74.Google Scholar
Šnajdr, M. 1987. The genera Paradoxides Brogniart and Hydrocephalus Barrande (Trilobita). Vĕstník Ústrĕdního Ústavu Geologického 62, 97104.Google Scholar
Solov'ev, I. A. 1980. Trilobity semeystva Paradoxididae i ikh znachenie dlya stratigrafii kembriyskikh otlozheniy. Leningrad, Avtoreferat dissertatsiina soiskanie uchenoi stepeni kandidata geologo-mineralicheskikh nauk, 22 pp. Published thesis (in Russian).Google Scholar
Srivastava, D. C. & Shah, J. 2006. Digital method for strain estimation and retrodeformation of bilaterally symmetric fossils. Geology 34, 593–6.Google Scholar
Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317 (5837), 499502.Google Scholar
Webster, M. & Hughes, N. C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology 73, 355–71.Google Scholar
Webster, M. & Sheets, H. D. 2010. A practical introduction to landmark-based geometric morphometrics. In Quantitative Methods in Paleobiology (ed. Alroy, J. & Hunt, G.), pp. 163–88. The Paleontological Society Papers 16.Google Scholar
Weidner, T. & Nielsen, A. T. 2009. The Middle Cambrian Paradoxides paradoxissimus Superzone on Oland, Sweden. GFF 131, 253–68.Google Scholar
Weidner, T. & Nielsen, A. T. 2014. A highly diverse trilobite fauna with Avalonian affinities from the Middle Cambrian Acidusus atavus Zone (Drumian Stage) of Bornholm, Denmark. Journal of Systematic Palaeontology 12, 2392.Google Scholar
Whittington, H. B., Chatterton, B. D. E., Speyer, S. E., Fortey, R. A., Owens, R. M., Chang, W. T., Dean, T., Jell, P. A., Laurie, J. R., Palmer, A. R., Repina, L. N., Rushton, A. W. A., Shergold, J. H., Clarkson, E. N. K., Wilmot, N. V. & Kelly, S. R. A. 1997. Trilobita. Introduction, Order Agnostida, Order Redlichiida. Treatise on Invertebrate Paleontology, Part O, Revised, vol. 1. Lawrence, KS: University of Kansas; New York: Geological Society of America, xxiv+530 pp.Google Scholar
Zamora, S., Álvaro, J. J., Clausen, S. & Esteve, J. 2014. Open quarry of the Brèche à Micmacca Member crossing the ‘telesto level’ at Assemame, central Anti-Atlas. In Stratigraphic Overview of the Ediacaran and Cambrian from the Anti-Atlas, Morocco (ed. Devaere, L., Clausen, S. & Álvaro, J. J.), pp. 72–5. Lille: University of Lille I.Google Scholar
Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. 2012. Geometric Morphometrics for Biologists. San Diego, CA: Academic Press.Google Scholar