Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T07:40:13.608Z Has data issue: false hasContentIssue false

Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes

Published online by Cambridge University Press:  26 January 2015

BEATRIZ AGUIRRE-URRETA*
Affiliation:
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, pabellón 2, 1428 Buenos Aires, Argentina
MARINA LESCANO
Affiliation:
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, pabellón 2, 1428 Buenos Aires, Argentina
MARK D. SCHMITZ
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive Boise, Idaho, ID 83725, USA
MAISA TUNIK
Affiliation:
Universidad de Río Negro, Sede Alto Valle, General Roca, Río Negro, Argentina
ANDREA CONCHEYRO
Affiliation:
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, pabellón 2, 1428 Buenos Aires, Argentina
PETER F. RAWSON
Affiliation:
Centre for Environmental and Marine Sciences, University of Hull (Scarborough Campus), Filey Road, Scarborough, North Yorkshire YO11 3AZ Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
VICTOR A. RAMOS
Affiliation:
Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, pabellón 2, 1428 Buenos Aires, Argentina
*
Author for correspondence: [email protected]

Abstract

Two tuffs in the Lower Cretaceous Agrio Formation, Neuquén Basin, provided U–Pb zircon radioisotopic ages of 129.09±0.16 Ma and 127.42±0.15 Ma. Both horizons are well constrained biostratigraphically by ammonites and nannofossils and can be correlated with the ‘standard’ sequence of the Mediterranean Province. The lower horizon is very close to the base of the Upper Hauterivian and the upper horizon to the Hauterivian/Barremian boundary, indicating that the former lies at c. 129.5 Ma and the latter at c. 127 Ma. These new radioisotopic ages fill a gap of over 8 million years in the numerical calibration of the current global Early Cretaceous geological time scale.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguado, R., Company, M., O’Dogherty, L., Sandoval, J. & Tavera, J. M. 2014. Late Hauterivian–early Barremian calcareous nannofossil biostratigraphy, palaeoceanography, and stable isotope record in the Subbetic domain (southern Spain). Cretaceous Research 49, 105–24.Google Scholar
Aguirre-Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G. & Jaillard, E. 2007. The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42, 143–73.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Pazos, P. J., Lazo, D. G., Fanning, C. M. & Litvak, V. D. 2008. First U-Pb SHRIMP age of the Hauterivian stage, Neuquén Basin, Argentina. Journal of South American Earth Sciences 26, 91–9.CrossRefGoogle Scholar
Aguirre-Urreta, M. B. & Rawson, P. F. 1997. The ammonite sequence in the Agrio Formation (Lower Cretaceous), Neuquén basin, Argentina. Geological Magazine 134, 449–58.Google Scholar
Aguirre-Urreta, M. B. & Rawson, P. F. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation. Cretaceous Research 35, 208–16.Google Scholar
Aguirre-Urreta, M. B., Rawson, P. F., Concheyro, G. A., Bown, P. R. & Ottone, E. G. 2005. Lower Cretaceous biostratigraphy of the Neuquén Basin. In The Neuquén Basin: A Case Study in Sequence Stratigraphy and Basin Dynamics (eds Veiga, G., Spalletti, L., Howell, J. A. & Schwarz, E.), pp. 5781. Geological Society of London, Special Publication no. 252.Google Scholar
Applegate, J. & Bergen, J. 1988. Cretaceous calcareous nannofossil biostratigraphy of sediments recovered from the Galicia Margin, ODP Leg 103. In Proceedings of the Ocean Drilling Project, Scientific Results, vol. 103 (eds Boillot, G., Winterer, E. L., Meyer, A. W., et al.), pp. 293346. College Station, Texas.Google Scholar
Baldwin, B., Coney, P. J. & Dickinson, W. R. 1974. Dilemma of a Cretaceous time scale and rates of sea-floor spreading. Geology 1974 (2), 267–70.2.0.CO;2>CrossRefGoogle Scholar
Bergen, J. A. 1994. Berriasian to Early Aptian calcareous nannofossils from the Vocontian Trough (SE France) and Deep Sea Drilling Site 534: new nannofossil taxa and a summary of low-latitude biostratigraphic events. Journal of Nannoplankton Research 16, 5969.CrossRefGoogle Scholar
Bown, P. R. & Concheyro, A. 2004. Lower Cretaceous calcareous nannoplankton from the Neuquén Basin, Argentina. Marine Micropaleontology 52, 5184.CrossRefGoogle Scholar
Bown, P. R., Rutledge, D. C., Crux, J. A. & Gallagher, L. T. 1998. Lower Cretaceous. In Calcareous Nannofossil Biostratigraphy (ed. Bown, P. R.), pp. 86131. British Micropalaeontology Society Publication Series. London: Chapman & Hall.CrossRefGoogle Scholar
Bralower, T. J., Leckie, R. M., Sliter, W. V. & Thierstein, H. R. 1995. An integrated Cretaceous microfossil biostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 6579. Society of Economic Paleontologists and Mineralogists, Special Publication no. 54.Google Scholar
Brinkmann, H. D. 1994. Facies and sequences of the Agrio Formation (Lower Cretaceous) in the central and southern Neuquén Basin, Argentina. Zentralblatt für Geologie und Palaeontologie 1, 309–17.Google Scholar
Cecca, F., Pallini, G., Erba, E., Premoli-Silva, I. & Coccioni, R. 1994. Hauterivian-Barremian chronostratigraphy based on ammonites, nannofossils, planktonic foraminifera and magnetic chrons from the Mediterranean domain. Cretaceous Research 15, 457–67.CrossRefGoogle Scholar
Channell, J. E. T., Casellato, C. E., Muttoni, G. & Erba, E. 2010. Magnetostratigraphy, nannofossil stratigraphy and apparent polar wander for Adria-Africa in the Jurassic-Cretaceous boundary interval. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 5175.Google Scholar
Channell, J. E. T., Cecca, F. & Erba, E. 1995. Correlations of Hauterivian and Barremian (Early Cretaceous) stage boundaries to polarity chrons. Earth and Planetary Science Letters 134, 125–40.Google Scholar
Channell, J. E. T., Erba, E., Nakanishi, M. & Tamaki, K. 1995. Late Jurassic-Early Cretaceous time scales and oceanic magnetic anomaly block models. In Geochronology Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 5163. Society of Economic Paleontologists and Mineralogists, Special Publication no. 54.Google Scholar
Charrier, R., Pinto, L. & Rodríguez, M. P. 2007. Tectonostratigraphic evolution of the Andean Orogen in Chile. In The Geology of Chile (eds Moreno, T. & Gibbons, W.), pp. 21114. London: The Geological Society.CrossRefGoogle Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2013. The ICS International Chronostratigraphic Chart. Episodes 36, 199204.Google Scholar
Concheyro, A., Lescano, M., Caramés, A. & Ballent, S. 2009. Micropaleontología de la Formación Agrio (Cretácico inferior) en distintos sectores de la cuenca Neuquina, Argentina. Revista de la Asociación Geológica Argentina 65, 342–61.Google Scholar
Condon, D., Schoene, B., Bowring, S., Parrish, R., McLean, N., Noble, S. & Crowley, Q. 2007. EARTHTIME; isotopic tracers and optimized solutions for high-precision U-Pb ID-TIMS geochronology. Eos, Transactions of the American Geophysical Union 88 (52), Fall Meeting Supplement, Abstract V41E-06.Google Scholar
Davydov, V. I., Crowley, J. L., Schmitz, M. D. & Poletaev, V. I. 2010. High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch-band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems 11, Q0AA04, doi: 10.1029/2009GC002736.Google Scholar
Einsele, G. 2000. Sedimentary Basins, Evolution, Facies and Sediment Budget. Berlin: Springer-Verlag, 792 pp.Google Scholar
Fiet, N., Quidelleur, X., Parize, O., Bulot, L. G. & Gillot, P. Y. 2006. Lower Cretaceous stage durations combining radiometric data and orbital chronology: towards a more stable relative time scale? Earth and Planetary Science Letters 246, 407–17.CrossRefGoogle Scholar
Folguera, A. & Ramos, V. A. 2011. Repeated eastward shifts of arc magmatism in the southern Andes: a revision to the long-term pattern of Andean uplift and magmatism in the southern Andes. Journal of South American Earth Sciences 32, 530–45.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier, 1144 pp.Google Scholar
Gulisano, C. A. & Gutiérrez Pleimling, A. 1988. Depósitos eólicos del Miembro Avilé (Formación Agrio, Cretácico inferior) en el norte del Neuquén, Argentina. Actas Segunda Reunión Argentina de Sedimentología 1, 120–4.Google Scholar
He, H. Y., Pan, Y. X., Tauxe, L., Qin, H. F. & Zhu, R. X. 2008. Toward age determination of the M0r (Barremian-Aptian boundary) of the Early Cretaceous. Physics of the Earth and Planetary Interiors 169, 41–8.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.Google Scholar
Leanza, H. A. & Hugo, C. 2001. Hoja Geológica Zapala, Hoja 3969-I, 1:250.000. Boletín del Instituto de Geología y Recursos Minerales 275, 1128.Google Scholar
Liu, Y. Q., Ji, Q., Jiang, X.-J., Kuang, H.-W., Ji, S., Gao, L.-F., Zhang, Z.-G., Peng, N., Yuan, Ch.-X., Wang, X.-R. & Xu, H. 2013. U–Pb zircon ages of Early Cretaceous volcanic rocks in the Tethyan Himalaya at Yangzuoyong Co Lake, Nagarze, Southern Tibet, and implications for the Jurassic/Cretaceous boundary. Cretaceous Research 40, 90101.Google Scholar
Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W. & Bralower, T. J. 2005. Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise. Geology 33, 185–8.Google Scholar
Mattinson, J. M. 2005. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.Google Scholar
Morata, D., Féraud, G., Aguirre, L., Arancibia, G., Belmar, M., Morales, S. & Carrillo, J. 2008. Geochronology of the Lower Cretaceous volcanism from the Coastal Range at the 29°20′-30°S, Chile. Revista Geológica de Chile 35, 123–45.Google Scholar
Mutterlose, J. C., Autran, G., Baraboschkin, E. J., Cecca, F., Erba, E., Gardin, S., Herngren, H., Hoedemaker, P., Kakabadze, M., Klein, J., Leereveld, H., Rawson, P. F., Ropolo, P., Vasicek, Z. & von Salis, K. 1996. The Hauterivian Stage. Bulletin de L’Institut Royal des Sciences Naturelles de Belgique 66 (Supplement), 1924.Google Scholar
Naipauer, M., Tunik, M., Marques, J. C., Rojas Vera, E. A., Vujovich, G. I., Pimentel, M. M. & Ramos, V. A. 2014. U–Pb detrital zircon ages of Upper Jurassic continental successions: implications for the provenance and absolute age of the Jurassic–Cretaceous boundary in the Neuquén Basin. In Geodynamic Processes in the Andes of Central Chile and Argentina (eds Sepúlveda, S., Giambiagi, L., Pinto, L., Moreiras, S., Tunik, M., Hoke, G. & Farías, M.). Geological Society of London, Special Publication no. 399. Published online 4 March 2014. doi: 10.1144/SP399.1.Google Scholar
Ogg, J. G., Agterberg, F. P. & Gradstein, F. M. 2004. The Cretaceous Period. In A Geologic Time Scale (eds Gradstein, F., Ogg, J. G. & Smith, A.), pp. 344–83. Cambridge: Cambridge University Press.Google Scholar
Ogg, J. G. & Hinnov, L. A. 2012 a. The Cretaceous Period. In The Geologic Time Scale 2012 (eds Gradstein, F., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 793853. Amsterdam: Elsevier.Google Scholar
Ogg, J. G. & Hinnov, L. A. 2012 b. The Jurassic Period. In The Geologic Time Scale 2012 (eds Gradstein, F., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 731–91. Amsterdam: Elsevier.Google Scholar
Ogg, J. G., Ogg, G. & Gradstein, F. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press, 177 pp.Google Scholar
Parada, M. A., López-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., Aguirre, L., Féraud, G., Espinoza, F., Moreno, H., Figueroa, O., Muñoz-Bravo, J., Troncoso Vásquez, R. & Stern, C. R. 2007. Andean magmatism. In The Geology of Chile (eds Moreno, T. & Gibbons, W.), pp. 115–46. London: The Geological Society.CrossRefGoogle Scholar
Ramos, V. A. 2010. The tectonic regime along the Andes: present settings as a key for the Mesozoic regimes. Geological Journal 45, 225.Google Scholar
Reboulet, S., Rawson, P. F., Moreno-Bedmar, J. A., Aguirre-Urreta, M. B., Barragan, R., Bogomolov, Y., Company, M., Gonzalez-Arreola, C., Stoyanova, V. I., Lukeneder, A., Matrion, B., Mitta, V., Randrianaly, H., Vasicek, Z., Baraboshkin, E. J., Bert, D., Bersac, S., Bogdanova, T. N., Bulot, L. G., Latil, J.-L., Mikhailova, I. A., Ropolo, P. & Szives, O. 2011. Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Dijon, France, 30th August 2010). Cretaceous Research 32, 786–93.Google Scholar
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V., Ivanov, M., Kakabadze, M. V., Moreno-Bedmar, J. A., Sandoval, J., Baraboshkin, E. J., Çaglar, M. K., Fözy, I., González-Arreola, C., Kenjo, S., Lukeneder, A., Raisossadat, S. N., Rawson, P. F. & Tavera, J. M. 2014. Report on the 5th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Ankara, Turkey, 31st August 2013). Cretaceous Research 50, 126–37.Google Scholar
Rutledge, D. & Bown, P. R. 1996. New names for old: taxonomic clarification of some Early Cretaceous nannofossil marker-species. Journal of Nannoplankton Research 18, 53–9.Google Scholar
Schmitz, M. D. & Davydov, V. I. 2012. Quantitative radiometric and biostratigraphic calibration of the global Pennsylvanian – Early Permian time scale. Geological Society of America Bulletin 124, 549–77.Google Scholar
Schmitz, M. D. & Schoene, B. 2007. Derivation of isotope ratios, errors and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems 8, Q08006, doi: 10.1029/2006GC00149.Google Scholar
Sissingh, W. 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56, 3765.Google Scholar
Spalletti, L. A., Poire, D., Pirrie, D., Matheos, S. & Doyle, P. 2001. Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clástica-carbonática del Cretácico Inferior de la cuenca Neuquina, Argentina. Revista Sociedad Geológica de España 14, 5774.Google Scholar
Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N. & Lozar, F. 2006. Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography 21, PA4212, doi: 10.1029/005PA001224.CrossRefGoogle Scholar
Vennari, V. V., Lescano, M., Naipauer, M., Aguirre-Urreta, B., Concheyro, A., Schaltegger, U., Armstrong, R., Pimentel, M. & Ramos, V. A. 2014. New constraints on the Jurassic–Cretaceous boundary in the High Andes using high-precision U-Pb data. Gondwana Research 26, 374–85.Google Scholar
Wan, X., Scott, R., Chen, W., Gao, L. & Zhang, Y. 2011. Early Cretaceous stratigraphy and SHRIMP U-Pb age constrain the Valanginian–Hauterivian boundary in southern Tibet. Lethaia 44, 231–44.Google Scholar
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of West Central Argentina. Memoir of the University of Washington 1, 1469.Google Scholar
Wimbledon, W. A. P., Casellato, C. E., Reháková, D., Bulot, L. C., Erba, E., Gardin, S., Verreussel, R. M., Munsterman, D. K. & Hunt, C. O. 2011. Fixing a basal Berriasian and Jurassic–Cretaceous (J-K) boundary – is there perhaps some light at the end of the tunnel? Rivista Italiana di Paleontologia e Stratigrafia 117, 295307.Google Scholar
Supplementary material: File

Aguirre-Urreta supplementary material

Aguirre-Urreta supplementary material 1

Download Aguirre-Urreta supplementary material(File)
File 588.8 KB