Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:58:07.314Z Has data issue: false hasContentIssue false

Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies

Published online by Cambridge University Press:  21 October 2015

L. SAHA*
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee, India School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
D. FREI
Affiliation:
Central Analytical Facility, Stellenbosch University, South Africa
A. GERDES
Affiliation:
Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
J. K. PATI
Affiliation:
Department of Earth and Planetary Sciences, University of Allahabad, India
S. SARKAR
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee, India
V. PATOLE
Affiliation:
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research-Bhopal, India
A. BHANDARI
Affiliation:
Department of Earth Sciences, Indian Institute of Technology, Roorkee, India
P. NASIPURI
Affiliation:
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research-Bhopal, India
*
Author for correspondence: [email protected]

Abstract

A comprehensive study based on U–Pb and Hf isotope analyses of zircons from gneisses has been conducted along the western part (Babina area) of the E–W-trending Bundelkhand Tectonic Zone in the central part of the Archaean Bundelkhand Craton. 207Pb–206Pb zircon ages and Hf isotopic data indicate the existence of a felsic crust at ~ 3.59 Ga, followed by a second tectonothermal event at ~ 3.44 Ga, leading to calc-alkaline magmatism and subsequent crustal growth. The study hence suggests that crust formation in the Bundelkhand Craton occurred in a similar time-frame to that recorded from the Singhbhum and Bastar cratons of the North Indian Shield.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharyaa, S. K., Gupta, A. & Orihashi, Y. 2010. New U–Pb zircon ages from Paleo–Mesoarchean TTG gneisses of the Singhbhum Craton, Eastern India. Geochemical Journal 44, 81–8.CrossRefGoogle Scholar
Amelin, Y., Lee, D.-C. & Halliday, A. N. 2000. Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica Cosmochimica Acta 64, 4205–25.CrossRefGoogle Scholar
Bandyopadhyay, P. K., Chakrabarti, A. K., Deomurari, M. P. & Misra, S. 2001. 2.8 Ga old anorogenic granite-acid volcanic association from western margin of Singhbhum–Orissa craton, eastern India. Gondwana Research 4, 465–75.CrossRefGoogle Scholar
Basu, A. K. 1986. Geology of parts of Bundelkhand granite massif, central India. Record of the Geological Survey of India 11, 61124.Google Scholar
Beckinsale, R. D., Drury, S. A. & Holt, R. W. 1980. 3300-Myr old gneisses from the South Indian Craton. Nature 283, 469–70.CrossRefGoogle Scholar
Bouvier, A., Vervoort, J. & Patchett, P. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.CrossRefGoogle Scholar
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J. 2008. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience 1, 64–7.CrossRefGoogle Scholar
Condie, K. C. 2000. Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322, 153–62.CrossRefGoogle Scholar
Corfu, F. 2012. A century of U–Pb geochronology: the long quest towards concordance. Geological Society of America Bulletin 125, 3347.CrossRefGoogle Scholar
Fisher, C. M., Vervoort, J. D. & Hanchar, J. M. 2014. Guidelines for reporting zircon Hf isotope data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical geology 363, 125–33.CrossRefGoogle Scholar
Frei, D. & Gerdes, A. 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICPMS. Chemical Geology 261, 261–70.CrossRefGoogle Scholar
Friend, C. R. L. & Nutman, A. P. 2005. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850 and 3690 MA, Itsaq Gneiss Complex, southern West Greenland. Journal of Geology 113, 375–97.CrossRefGoogle Scholar
Gerdes, A. & Zeh, A. 2006. Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 4761.CrossRefGoogle Scholar
Gerdes, A. & Zeh, A. 2009. Zircon formation versus zircon alteration — new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261, 230–43.CrossRefGoogle Scholar
Ghosh, J. G. 2004. 3.56 Ga tonalite in the central part of the Bastar craton, India: oldest Indian date. Journal of Asian Earth Science 23, 359–64.CrossRefGoogle Scholar
Gopalan, K., Macdougall, J. D., Roy, A. B. & Murali, A. V. 1990. Sm–Nd evidence for 3.3 Ga old rock in Rajasthan, north-western India. Precambrian Research 48, 287–97.CrossRefGoogle Scholar
Goswami, J. N., Misra, S., Wiedenback, M., Ray, S. L. & Saha, A. K. 1995. 3.55 Ga-old zircon from Singhbhum-Orissa Iron Ore craton, eastern India. Current Science 69, 1008–11.Google Scholar
Harrison, T., Schmitt, A., McCulloch, M. & Lovera, O. 2008. Early (>4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters 268, 476–86.CrossRefGoogle Scholar
Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S. P. & Dunkley, D. J. 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Research 153, 179208.CrossRefGoogle Scholar
Jayananda, M., Kanob, T., Peucat, J.-J. & Channabasappa, S. 2008. 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Research 162, 160–79.CrossRefGoogle Scholar
Jayananda, M., Moyen, J.-F., Martin, H., Peucat, J.-J., Auvray, B. & Mahabaleswar, B. 2000. Late Archean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research 99, 225–54.CrossRefGoogle Scholar
Kaur, P., Zeh, A., Chaudhri, N., Gerdes, A. & Okrusch, M. 2011. Archaean to Palaeoproterozoic crustal evolution of the Aravalli mountain range, NW India, and its hinterland: the U–Pb and Hf isotope record of detrital zircon. Precambrian Research 187, 155–164.CrossRefGoogle Scholar
Kaur, P., Zeh, A. & Chaudhri, N. 2014. Characteristic of U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, Northern India. Precambrian Research 255, 236–44.CrossRefGoogle Scholar
Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A. & Pidgeon, R. T. 2010. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters 296, 4556.CrossRefGoogle Scholar
Kröner, A., Hofmann, J., Xie, H., Wu, F., Münker, C., Hegner, E., Wong, J., Wan, Y. & Liu, D. 2012. Generation of early Archean felsic volcanics and TTG gneisses through crustal melting, eastern Kaapvaal craton, southern Africa. American Geophysical Union Fall Meeting 2012, abstract #T14B-08.Google Scholar
Kröner, A., Wan, A., Liu, X. & Liu, D. 2014. Dating of zircon from high-grade rocks: which is the most reliable method? Geoscience Frontiers 5, 515–23.CrossRefGoogle Scholar
Kumar, S., Yi, K., Raju, K., Pathak, M., Kim, N. & Lee, T. H. 2011. SHRIMP U–Pb geochronology of felsic magmatic lithounits in the central part of Bundelkhand Craton, Central India. In 7th Hutton Symposium on Granites and Related Rocks (eds Molina, J. F., Scarrow, J. H., Bea, F. & Montero, P.), p. 83.Google Scholar
Ludwig, K. 2003. Isoplot/Ex Version 3: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1, 43 pp.Google Scholar
Maibam, B., Goswami, J. N. & Srinivasan, R. 2011. Pb–Pb zircon ages of Archean metasediments and gneisses from the Dharwar craton, southern India: implications for the antiquity of the eastern Dharwar craton. Journal of Earth System Sciences 120, 643–61.CrossRefGoogle Scholar
Malviya, V. P., Arima, M. & Pati, J. K. 2005. Island arc related Archean mafic volcanism from Bundelkhand craton, Central India – an implication from Nd model ages. Abstracts, Joint Meeting of Earth and Planetary Sciences, Japan.Google Scholar
Mattinson, J. M. 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186–98.CrossRefGoogle Scholar
Meen, J. K., Rogers, J. J. W. & Fullagar, P. D. 1992. Lead isotopic composition in the western Dharwar craton, southern India: evidence for distinct middle Archaean terrains in a late Archaean craton. Geochimica Cosmochimica Acta 56, 2455–70.CrossRefGoogle Scholar
Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., Newstead, B. & Gifford, J. 2010. Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. Journal of Asian Earth Sciences 39, 483515.CrossRefGoogle Scholar
Mezger, K. & Krogstad, E. J. 1997. Interpretation of discordant U-Pb zircon ages: an evaluation. Journal of Metamorphic Geology 15, 127–40.CrossRefGoogle Scholar
Mishra, S., Deomurari, M. P., Wiedenbeck, M., Goswami, J. N., Ray, S. & Saha, A. K. 1999. 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Research 93, 139–51.CrossRefGoogle Scholar
Mondal, M. E. A., Goswami, J. N., Deomurari, M. P. & Sharma, K. K. 2002. Ion microprobe 207Pb/206Pb ages zircons from Bundelkhand massif, north India: implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research 117, 85100.CrossRefGoogle Scholar
Mukhopadhyay, J., Beukes, N. J., Armstrong, R. A., Zimmermann, U., Ghosh, G. & Medda, R. A. 2008. Dating the oldest Greenstone in India, a 3.51-Ga precise U–Pb SHRIMP zircon age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton. Journal of Geology 116, 449–61.CrossRefGoogle Scholar
Myers, J. S. 1988. Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western Australia. Precambrian Research 38, 297307.CrossRefGoogle Scholar
Nasdala, L., Hofmeister, W., Norberg, N., Mattinson, J. M., Corfu, F., Dörr, W., Kamo, S. L., Kennedy, A. K., Kronz, A., Reiners, P. W., Frei, D., Košler, J., Wan, Y., Götze, J., Häger, T., Kröner, A. & Valley, J. W. 2008. Zircon M257 – a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostandards and Geoanalytical Research 32, 247–65.CrossRefGoogle Scholar
Nebel-Jacobsen, Y., Munker, C., Nebel, O., Gerdes, A., Mezger, K. & Nelson, D. 2010. Reworking of Earth's first crust: constraints from Hf isotopes in Archean zircons form Mt Narryer, Australia. Precambrian Research 182, 175–86.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L., Horie, K. & Hikada, H. 2007. 3,850 Ma tonalites in the Nuuk region, Greenland: geochemistry and their reworking within an Eoarchaean gneiss complex. Contributions to Mineralogy and Petrology 154, 385408.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Mcgregor, V. R. 2000. The early Archaean Itsaq Gneiss Complex of southern West Greenland: the importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution. Geochimica et Cosmochimica Acta 64, 3035–60.CrossRefGoogle Scholar
Nutman, A. P., Chadwick, B., Krishna Rao, B. & Vasudev, V. N. 1996. SHRIMP U–Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups and granites adjacent to Sandur schist belt. Journal of the Geological Society of India 47, 153–61.Google Scholar
Nutman, A. P., Chadwick, B., Ramakrishnan, M. & Viswanatha, M. N. 1992. SHRIMP U–Pb ages of detrital zircon in Sargur supracrustal rocks in western Karnataka, Southern India. Journal of the Geological Society of India 39, 367–74.Google Scholar
Pati, J. K., Patel, S. C., Pruseth, K. L., Malviya, V. P., Arima, M., Raju, S., Pati, P. & Prakash, K. 2007. Geology and geochemistry of giant quartz veins from the Bundelkhand craton, Central India and their implications. Journal of Earth System Science 116, 497510.CrossRefGoogle Scholar
Peucat, J.-J., Mahabaleshwar, B. & Jayananda, M. 1993. Age of younger tonalitic magmatism and granulite metamorphism in the south Indian transition zone (Krishnagiri area): comparison with older peninsular gneisses from Hassan-Gorur area. Journal of Metamorphic Geology 11, 879–88.CrossRefGoogle Scholar
Peucat, J.-J., Bouhallier, H., Fanning, C. M. & Jayananda, M. 1995. Age of Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, south India). Journal of Geology 103, 701–10.CrossRefGoogle Scholar
Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. 2012. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Research 198–199, 5176.CrossRefGoogle Scholar
Rajesh, H. M., Mukhopadhyay, J., Beukes, N. J., Gutzmer, J., Belyanin, G. A. & Armstrong, R. A. 2009. Evidence of an early Archaean granite from Bastar Craton, India. Journal of the Geological Society, London 166, 193–6.CrossRefGoogle Scholar
Ramakrishnan, M., Venkatadasu, S. P. & Kröner, A. 1994. Middle Archaean age of Sargur Group by single grain zircon dating and geochemical evidence for the clastic origin of metaquartzite from J.C. Pura Greenstone belt, Karnataka. Journal of the Geological Society of India 44, 605–16.Google Scholar
Ram Mohan, M., Singh, S. P., Santosh, M., Siddiqui, M. A. & Balaram, V. 2012. TTG suite from the Bundelkhand craton, central India: geochemistry, petrogenesis and implications for Archean crustal evolution. Journal of Asian Earth Sciences 58, 3850.CrossRefGoogle Scholar
Rogers, J. J. W. 1996. A history of continents in the past three billion years. Journal of Geology 104, 91107.CrossRefGoogle Scholar
Roy, A. B., Kröner, A., Rathore, S., Laul, V. & Purohit, R. 2012. Tectono-metamorphic and geochronologic studies from Sandmata Complex, northwest Indian shield: implications on exhumation of Late-Palaeoproterozoic granulites in an Archaean–early Palaeoproterozoic granite-gneiss terrane. Journal of the Geological Society of India 79, 323–34.CrossRefGoogle Scholar
Saha, A. K., Bose, R., Ghosh, S. N. & Roy, A. 1977. Petrology and emplacement of Mayurbhanj Granite batholith, eastern India. Evolution of orogenic belts of India (Part 2) . Bulletin of the Geological Mineralogical Meteorological Society of India 49, 134.Google Scholar
Saha, L., Pant, N. C., Pati, J. K., Upadhaya, D., Berndt, J., Bhattacharya, A. & Satyanarayan, M. 2011. Neoarchean high pressure margarite-phengitic muscovite- chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite-chlorite schists from the Bundelkhand craton, north-central India. Contributions to Mineralogy and Petrology 161, 511–30.CrossRefGoogle Scholar
Sarkar, G., Corfu, F., Paul, D. K., McNaughton, N. J., Gupta, S. N. & Bishui, P. K. 1993. Early Archean crust in Bastar craton, central India – a geochemical and isotopic study. Precambrian Research, 62, 127–37.CrossRefGoogle Scholar
Sarkar, A., Paul, D. K. & Potts, P. J. 1996. Geochronology and geochemistry of Mid-Archean trondhjemitic gneisses from the Bundelkhand craton, central India. Recent Researches in Geology 16, 7692.Google Scholar
Sengupta, S., Corfu, F., McNutt, R. H. & Paul, D. K. 1996. Mesoarchaean crustal history of the eastern Indian Craton – Sm–Nd and U–Pb isotopic evidence. Precambrian Research 77, 1722.CrossRefGoogle Scholar
Sharma, K. K. & Rahman, A. 2000. The Early Archaean–Paleoproterozoic crustal growth of the Bundelkhand craton, northern Indian shield. In Crustal Evolution and Metallogeny in the Northwestern Indian Shield (ed. Deb, M.), pp. 5172. New Delhi: Narosa Publishing House.Google Scholar
Singh, V. K. & Slabunov, A. 2014. The Central Bundelkhand Archean greenstone complex, Bundelkhand craton, central India: geology, composition, and geochronology of supracrustal rocks. International Geology Review 57, 1349–64.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial Pb isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. (eds) 2007. Earth's Oldest Rocks. Developments in Precambrian Geology 15. Amsterdam: Elsevier, 856 pp.Google Scholar
Wiedenbeck, M. & Goswami, J. N. 1994. An ion-probe single zircon 207Pb/206Pb age from the Mewar Gneiss at Jhamarkotra, Rajasthan. Geochimica et Cosmochimica Acta 58, 2135–41.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–8.CrossRefGoogle ScholarPubMed
Zeh, A., Gerdes, A. & Millonig, L. 2011. Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. Journal of the Geological Society, London 168, 953–63.CrossRefGoogle Scholar
Supplementary material: File

Saha supplementary material S1

Saha supplementary material

Download Saha supplementary material S1(File)
File 47.1 KB
Supplementary material: Image

Saha supplementary material S2

Saha supplementary material

Download Saha supplementary material S2(Image)
Image 16.3 MB