Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:40:41.612Z Has data issue: false hasContentIssue false

Biostratigraphy of the supra-ophiolite sediments of the Troodos Massif, Cyprus: the Cretaceous Perapedhi, Kannaviou, Moni and Kathikas formations

Published online by Cambridge University Press:  01 May 2009

E. Urquhart
Affiliation:
Postgraduate Unit of Micropalaeontology, Department of Geological Sciences, University College London, Gower Street, London WCIE 6BT, UK
F. T. Banner
Affiliation:
Postgraduate Unit of Micropalaeontology, Department of Geological Sciences, University College London, Gower Street, London WCIE 6BT, UK

Abstract

The Troodos Massif of Cyprus exposes a classic and much-studied ophiolite sequence representing oceanic crust of Late Cretaceous age. K-Ar dating of the sheeted dykes and of the overlying pillow lavas gives a range of 83±3 Ma (earliest Campanian) and 75±5 Ma (late Campanian) respectively for the formation of the upper levels of the ophiolite. An autochthonous sequence of Late Cretaceous to Recent age sediments is exposed resting on the ophiolite, the oldest part of which reflects sedimentation in an apparently deep marine, oceanic setting. Little biostratigraphical information is available to constrain the chronostratigraphy of these sediments in relation to the complex geological history of the island, including the uplift and unroofing of the ophiolite, despite their richness in microfauna and flora. This paper provides an integrated biostratigraphical study based on radiolaria, planktonic foraminifera and calcareous nannofossils of the oldest part of the supra-ophiolite succession, of the Cretaceous Perapedhi, Kannaviou, Moni and Kathikas formations. For the first time, well-defined micropalaeontological evidence establishes the relative ages of these formations. The umbers of the Perapedhi formation are no younger than Campanian in age while the volcaniclastic sediments of the Kannaviou formation were also deposited during Campanian times. The matrix of the Moni formation contains a microfauna consistent with the hypothesis that it is derived from the Kannaviou. In contrast, the Kathikas formation is composed of sediment derived mainly from the allochthonous Mamonia complex, but autochthonous pelagic interbed horizons demonstrate that it was deposited probably within a very short time interval during the late Maastrichtian. Key index species are figured, including the first published micrographs of Cretaceous planktonic foraminifera from Cyprus.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abin, F. E. 1988. Radiolarios del Campaniano de Cuba. Colaboración cubana al Proyecto PICG-165, ‘Correlación estratigráfica regional del Caribe’. Centro de Investigación y Desarrollo del Petroleo La Habana, pp. 191.Google Scholar
Banner, F. T. & Blow, W. H. 1960. Some primary types of species belonging to the superfamily Globigerinaceae. Contributions from the Cushman Foundation for Foraminiferal Research 11, 141Google Scholar
Blome, C. & Irwin, W. 1985. Equivalent radiolarian ages from ophiolitic terranes of Cyprus and Oman. Geology 13, 401–4.2.0.CO;2>CrossRefGoogle Scholar
Bragin, N. Y. & Bragina, L. G. 1991. Radiolarian biostratigraphy of Troodos Upper Cretaceous sediments (Cyprus). Abstracts volume, 6th meeting of the International Association of Radiolarian Paleontologists, Firenze 1991, 17.Google Scholar
Brotzen, F. 1936. Foraminiferen aus dem schwedischen untersten Senon von Eriksdal in Sconen. Sveriges Geoliska Undersokning 30, 1206.Google Scholar
Bukry, D. 1969. Upper Cretaceous coccoliths from Texas and Europe. University of Kansas Paleontology Contributions 51 (Protista 2), 179.Google Scholar
Burnett, J. A. 1990. A new nannofossil zonation scheme for the Boreal Campanian. I.N.A. Newsletter 12(3), 6770.Google Scholar
Campbell, A. S. & Clark, B. L. 1944. Radiolaria from Upper Cretaceous of Middle California. Geological Society of America, Special Papers 57, i–viii and 161.Google Scholar
Caron, M. 1985. Cretaceous planktic foraminifera. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. and Perch-Nielsen, K.), pp. 1786. Cambridge University Press.Google Scholar
Cleintuar, M. R., Knox, G. J. & Ealey, P. J. 1977. The geology of Cyprus and its place in the East-Mediterranean framework. Geologie en Mijnbouw 56, 6682.Google Scholar
Constantinou, G. & Govett, G. J. S. 1972. Genesis of sulphide deposits, ochre and umber of Cyprus. Transactions of the Institution of Mining and Metallurgy B81 B3446.Google Scholar
Cushman, J. A. 1926. Some foraminifera from the Mendez Shale of Eastern Mexico. Contributions from the Cushman Laboratory for Foraminiferal Research 2, 1628.Google Scholar
Cushman, J. A. 1938. Some new species of rotaliform foraminifera from the American Cretaceous. Contributions from the Cushman Laboratory for Foraminiferal Research 14, 6671.Google Scholar
Dalbiez, F. 1955. The genus Globotruncana in Tunisia. Micropaleontology 1, 161–71.CrossRefGoogle Scholar
Delaloye, M. & Desmet, A. 1979. Nouvelles données radiométriques sur les pillow-lavas du Troodos (Chypre). Académie des Sciences, Paris, Comptes Rendus, Sér. D 288, 461–4.Google Scholar
Delaloye, M., Desmet, A., Desmons, J., Gagny, C. & Roca, G. 1980. Geochronological interpretation of the Troodos sheeted dyke complex. Ofioliti 5, 2734.Google Scholar
Dinkleman, M. G. 1973. Radiolarian stratigraphy: Leg 16, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 16, 747813.Google Scholar
D'orbigny, A. 1839. Foraminiféres. In Histoire physique, politique et naturelles de I'ile de Cuba (ed. Sagra, R. de la). Paris: Betrand, 224 pp.Google Scholar
Dumitrica, P. 1970. Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic deposits of Romania. Revue roumaine de Géologie, géophysique et géographie, Série de géologie 14, 45124.Google Scholar
Ealey, P. J. & Knox, G. J. 1975. The pre-Tertiary rocks of S. W. Cyprus. Geologie en Mijnbouw 54, 85100.Google Scholar
Ehrenberg, C. G. 1840. Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen der K. Akademie der Wissenschaften Berlin, Physik. (1838), p. 143.Google Scholar
Ehrenberg, C. G. 1843. Verbreitung und Einfluss des mikroskopischen lenebs in Süd- und Nord-Amerika. Abhandlungen der K. preussischen Akademie der Wissenschaften Phys.-math. Kl. (1841) 1, 291446.Google Scholar
Elderfield, H., Gass, I. G., Hammond, A. & Bear, L. M. 1972. The origin of ferromanganese sediments associated with the Troodos Massif of Cyprus. Sedimentology 19, 119.CrossRefGoogle Scholar
El-Naggar, Z. R. 1966. Stratigraphy and planktonic foraminifera of the Upper Cretaceous-Lower Tertiary succession in the Esna-Idfu region, Nile Valley, Egypt, U.A.R. Bulletin of the British Museum (Natural History), Geology (Supplement 2), 1291.Google Scholar
Empson-Morin, K. 1981. Campanian radiolaria from DSDP Site 313, Mid-Pacific Mountains. Micropaleontology 27, 249–92.CrossRefGoogle Scholar
Empson-Morin, K. 1982. Re-examination of the late Cretaceous radiolarian genus Amphipyndax Foreman. Journal of Paleontology 56, part 1, 507–19.Google Scholar
Empson-Morin, K. 1984. Depth and latitude distribution of radiolaria in Campanian (Late Cretaceous) tropical and subtropical oceans. Micropaleontology 30, 87115.CrossRefGoogle Scholar
Foreman, H. P. 1966. Two Cretaceous radiolarian genera. Micropaleontology 12, 355–9.CrossRefGoogle Scholar
Foreman, H. P. 1968. Upper Maestrichtian radiolaria of California. Special Papers in Palaeontology 3, iv and 182.Google Scholar
Foreman, H. P. 1971. Cretaceous radiolaria, Leg 7, DSDP. Initial Reports of the Deep Sea Drilling Project 7, 1673–93.Google Scholar
Foreman, H. P. 1973 a. Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae, and Theoperidae. Initial Reports of the Deep Sea Drilling Project 10, 407–74.Google Scholar
Foreman, H. P. 1973 b. Radiolaria from DSDP Leg 20. Initial Reports of the Deep Sea Drilling Project 20, 249305.Google Scholar
Foreman, H. P. 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. Initial Reports of the Deep Sea Drilling Project 32, 579676.Google Scholar
Foreman, H. P. 1977. Mesozoic Radiolaria from the Atlantic Basin and its Borderlands. In Stratigraphic Micropaleontology of Atlantic Basin and Borderlands (ed. Swain, F. M.), pp. 305–20. Amsterdam: Elsevier.CrossRefGoogle Scholar
Foreman, H. P. 1978. Mesozoic Radiolaria in the Atlantic Ocean off the northwest coast of Africa, Deep Sea Drilling Project, Leg 41. Initial Reports of the Deep Sea Drilling Project 41, 739–61.Google Scholar
Gandolfi, R. 1955. The genus Globotruncana in north-eastern Colombia. Bulletins of American Paleontology 136, 1118.Google Scholar
Gass, I. G. 1980. The Troodos Massif: its role in the unravelling of the ophiolite problem and its significance in the understanding of constructive plate margin processes. In Ophiolites, Proceedings, International ophiolite symposium, Cyprus, 1979 (ed. Panayiotou, A.), pp. 2335. Nicosia: Cyprus Geological Survey Department.Google Scholar
Irwin, W. P., Murchey, B. L., Jones, D. L. & Kling, S. A. 1980. Mid-Cretaceous radiolarians in Perapedhi Formation, Cyprus. Ofioliti 5, 265.Google Scholar
Kling, S. A. 1971. Radiolaria: Leg 6 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 6, 10691117.Google Scholar
Kling, S. A. 1982. Radiolarians from the Mariana Trough and trench region: Deep Sea Drilling Project Leg 60. Initial Reports of the Deep Sea Drilling Project 60, 537–55.Google Scholar
Koutsouxos, E. A. M. & Hart, M. B. 1990. Radiolarians and diatoms from the mid-Cretaceous succession of the Sergipe Basin, Northeastern Brazil: palaeoceanographic assessment. Journal of Micropalaeontology 9, 4563.CrossRefGoogle Scholar
Kozlova, G. E. & Gorbovets, A. N. 1966. Radiolyarii verkhnemelovykh i verkhneeotsenovykh otlozhenii Zapadno-Sibirskoi nizmennosti. (Radiolarians of the Upper Cretaceous and Upper Eocene deposits of the West Siberian Lowland). Trudy vsesoyuznogo neftyanogo nauchno-issledovatelskogo geologorazvedochnogo instituta (VNIGRI) (Proceedings of the All Union Petroleum Scientific Research Institute for Geological Survey (VNIGRI)) 248, 1159.Google Scholar
LapiÉrre, H. 1968. Découverte d'une série volcanosédimentaire probablement d'âge crétacé supérieur au Sud-Ouest de l'iîle de Chypre. Comptes Rendus de l'Académie des Sciences (Paris) Comptes Rendus, sér. D 266, 1817–20.Google Scholar
Lipman, R. KH. 1952. Materialy k. monograficheskomuizucheniyu radiolyarii verkhnemelovykh otlozhenii Russkoi Platformy. Trudy vsesoyuznogo Nauchno-Issledovatelskogo. Geologicheskogo Instituta (VSEGEI), Paleontologiya i Stratigrafiya, 2551.Google Scholar
Lipman, R. Kh. 1962. Pozdnemelovye radiolyarii Zapadno-Sibirskoi nizmennosti i Turgaiskogo progiba. Materialy po stratigrafii mezo-kainozoya Turgaiskogo progiba, severnogo Priaralya i Zapadno-Sibirskoi nizmennosti. Trudy Vsesoyuznogo Nauchno-Issledovatelskogo Geologicheskogo Instituta (VSEGEI) 77, 271323.Google Scholar
Loeblich, A. R. Jr. & Tappan, H. 1988. Foraminiferal Genera and their Classification. New York: Van Nostrand Reinhold Co., 970 pp.CrossRefGoogle Scholar
MacLeod, C. J. 1990. Role of the Southern Troodos Transform Fault in the rotation of the Cyprus microplate: evidence from the Eastern Limassol Forest Complex. In Ophiolites. Oceanic Crustal Analogues (eds Malpas, J. et al. ), pp. 7585. Proceedings of the International Symposium, Nicosia, Cyprus, October 1987.Google Scholar
Malpas, J., Moores, E., Panayiotou, A. & Xenophontos, C. (eds.) 1990. Ophiolites: Oceanic Crustal Analogues. Proceedings of the International Symposium, Nicosia, Cyprus, October 1987, 733 pp.Google Scholar
Manivit, H., Perch-Nielsen, K., Prins, B. & Verbeek, J. W. 1977. Mid Cretaceous calcareous nannofossil biostratigraphy. Koninkhjke Nederlandse Akademie Wetenschappen B80, 169–81.Google Scholar
Mantis, M. 1969 a. The microbiostratigraphy of a deep borehole at Xeros (Cyprus). Geological Survey Department, Cyprus, 113.Google Scholar
Mantis, M. 1969 b. Upper Cretaceous-Tertiary Foraminiferal Zones in Cyprus. Geological Survey Department, Cyprus, pp. 136.Google Scholar
Mantis, M. 1970. Upper Cretaceous-Tertiary Foraminiferal Zoning in Cyprus. Nicosia, Espetiris Cyprus Research Centre, 227–41.Google Scholar
Mantis, M. 1971 a. Paleontological evidence for defining the age of the Troodos pillow lava series. Cypriakos Logos 3, 202–8.Google Scholar
Mantis, M. 1971 b. Dictyomitra multicostata Zittel in Cyprus. Geological Survey Department, Cyprus, 110.Google Scholar
Mantis, M. 1977. The stratigraphy of a deep borehole at Palia Lemesos area South Cyprus. Bulletin of the Cyprus Geographical Association 6, 116.Google Scholar
Moore, T. C. 1973. Radiolaria from Leg 17 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 17, 797869.Google Scholar
Nakaseko, K., Nishimura, A. & Sugano, K. 1979. Cretaceous Radiolaria from the Shimanto Belt, Japan. News Osaka Micropaleontologists, Special Publication no. 2, 49 pp.Google Scholar
Nakaseko, K. & Nishimura, A. 1981. Upper Jurassic and Cretaceous Radiolaria from the Shimanto Group in Southwest Japan. Science Reports, College of General Education, Osaka University 30, 33203.Google Scholar
Nederbragt, A. J. 1990. Biostratigraphy and Paleoceanographic Potential of the Cretaceous Planktic Foraminifera Heterohelicidae. Vrije Universiteit te Amsterdam, Academische Proefschrift. Amsterdam: Centrale Huisdrukkerij Vrije Universiteit, 203 pp.Google Scholar
Okamura, M. 1980. Radiolarian fossils from the northern Shimanto Belt (Cretaceous) in Kochi Prefecture, Shikoku. In Geology and Paleontology of the Shimanto Belt (ed. Rinya-Koseikai, ), pp. 153–78. Selected Papers in Honor of Prof. Jiro Katto.Google Scholar
Olsson, R. 1964. Late Cretaceous planktonic foraminifera from New Jersey and Delaware. Micropaleontology 10, 157–88.CrossRefGoogle Scholar
Pantazis, Th. M. 1967. The Geology and Mineral Resources of the Pharmakas-Kalavasos Area. Memoirs of the Geological Survey, Cyprus no. 8, 190 pp.Google Scholar
Pessagno, E. A. 1962. The Upper Cretaceous stratigraphy and micropaleontology of south-central Puerto Rico. Micropaleontology 8, 349–68.CrossRefGoogle Scholar
Pessagno, E. A. 1963. Upper Cretaceous Radiolaria from Puerto Rico. Micropaleontology 9, 197214.CrossRefGoogle Scholar
Pessagno, E. A. 1967. Upper Cretaceous planktonic foraminifera from the Western Gulf Coastal Plain. Palaeontographica Americana 5, 259441.Google Scholar
Pessagno, E. A. 1971. Jurassic and Cretaceous Hagiastridae from the Blake-Bahama Basin (Site 5A, JOIDES Leg 1) and the Great Valley Sequence, California Coast Ranges. Bulletins of American Paleontology 60, 583.Google Scholar
Pessagno, E. A. 1972. Cretaceous Radiolaria. Part I. The Phaseliformidae, new family, and other Spongodiscacea from the Upper Cretaceous portion of the Great Valley Sequence; part I1, Pseudoaulophacidae Riedel from the Cretaceous of California and the Blake-Bahama Basin (JOIDES Leg 1). Bulletins of American Paleontology 61, 269328.Google Scholar
Pessagno, E. A. 1973. Upper Cretaceous Spumellariina from the Great Valley Sequence, California Coast Ranges. Bulletins of American Paleontology 63, 49102.Google Scholar
Pessagno, E. A. 1975. Upper Cretaceous Radiolaria from DSDP Site 275. Initial Reports of the Deep Sea Drilling Project 29, 1011–29.Google Scholar
Pessagno, E. A. 1976. Radiolarian Zonation and Stratigraphy of the Upper Cretaceous Portion of the Great Valley Sequence, California Coast Ranges. Micro-paleontology, Special Publication no. 2, 95 pp.Google Scholar
Petrushevskaya, M. G. & Kozlova, G. E. 1972. Radiolaria: Leg 14, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 14, 495648.Google Scholar
Plummer, H. J. 1931. Some Cretaceous foraminifera in Texas. University of Texas Bulletin 3101, 109203.Google Scholar
Benz, G. W. 1974. Radiolaria from Leg 27 of the Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 27, 769841.Google Scholar
Riedel, W. R. & Sanfilippo, A. 1970. Radiolaria, Leg 4, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 4, 503–75.Google Scholar
Riedel, W. R. & Sanfilippo, A. 1974. Radiolaria from the southern Indian Ocean, DSDP Leg 26. Initial Reports of the Deep Sea Drilling Project 26, 771814.Google Scholar
Robaszynski, F., Caron, M., Gonzalez Donoso, J. M. & Wonders, A. A. H. 1984. Atlas of Late Cretaceous Globotruncanids. Revue de Micropaléontologie 26, 145305.Google Scholar
Robertson, A. H. F. 1977 a. The Kannaviou Formation, Cyprus: volcaniclastic sedimentation of a probable Late Cretaceous volcanic arc. Journal of the Geological Society, London 134, 269–92.CrossRefGoogle Scholar
Robertson, A. H. F. 1977 b. The Moni Mélange, Cyprus: an olistostrome formed at a destructive plate margin. Journal of the Geological Society, London 133, 447–66.CrossRefGoogle Scholar
Robertson, A. H. F. & Hudson, J. D. 1973. Cyprus umbers: chemical precipitates on a Tethyan ocean ridge. Earth and Planetary Science Letters 18, 93101.CrossRefGoogle Scholar
Robertson, A. H. F. & Hudson, J. D. 1974. Pelagic sediments in the Cretaceous and Tertiary history of the Troodos Massif, Cyprus. In Pelagic Sediments on Land and Under the Sea (eds Hsu, K. J. and Jenkyns, H. C.), pp. 403436. International Association of Sedimentologists Special Publication no. 1. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1985. Evidence for the emplacement directions of allochthonous rocks in southern Cyprus. In Sixth Colloquium on Geology of the Aegean Region (eds Izdar, E. and Nakoman, E.) PIRI REIS International Contribution Series, Publication no. 2.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1986. The role of the Kyrenia Range Lineament, Cyprus, in the geological evolution of the eastern Mediterranean area. Philosophical Transactions of the Royal Society of London A317, 141–77.Google Scholar
Rust, D. 1898. Neue Beiträge zur Kenntniss der Fossilen Radiolarien aus Gesteinen des Jura und der Kreide. Palaeontographica 45, 167.Google Scholar
Rzehak, A. 1891. Die Foraminiferenfauna der alttertiären Ablagerungen von Brudendorf in Niederösterreich mit Berücksichtigung des angeglicken Kreidevorkommens von Leitzerdorf. Annalen des K.K. naturhistorischen Hofmuseums 6, 112.Google Scholar
Sanfilippo, A. & Riedel, W. R. 1985. Cretaceous radiolaria. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. and Perch-Nielsen, K.), pp. 573630. Cam-bridge University Press.Google Scholar
Schaaf, A. 1981. Late Early Cretaceous radiolaria from Deep Sea Drilling Project Leg 62. Initial Reports of the Deep Sea Drilling Project 62, 419–70.Google Scholar
Smith, C. C. & Pessagno, E. A. 1973. Planktonic foraminifera and stratigraphy of the Corsicana Formation (Maestrichtian) North-Central Texas. Special Publication of the Cushman Foundation for Foraminiferal Research 12, 568.Google Scholar
Stradner, H. 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. Proceedings of the Sixth World Petroleum Congress, Section 1, Paper 4 (preprint), 167–84.Google Scholar
Stradner, H. & Papp, A. 1961. Tertiäre Discoasteriden aus Österreich und deren stratigraphische Bedeutung mit Hinweisen auf Mexico, Rumäanien und Italien. Jahrbuch der Geologischen Bundesanstalt (Wien), special volume no. 7, 159 pp.Google Scholar
Subbotina, N. N. 1949. Microfauna of the Cretaceous of the southern slope of the Caucasus (Russian). Leningrad, Vses Neft. Nauchno-Issled. Geol.-Razved Inst. Vnigri. (All-Union Petroleum Scientific Research Geo-logical Prospecting Institute). Microfauna of the oil fields of the USSR, sbornik 2, Trudy, new series, vypusk 34, p. 33.Google Scholar
Swarbrick, R. E. & Naylor, M. A. 1980. The Kathikas mélange, SW Cyprus: late Cretaceous submarine debris flows. Sedimentology 27, 6378.CrossRefGoogle Scholar
Swarbrick, R. E. & Robertson, A. H. F. 1980. Revised stratigraphy of the Mesozoic rocks of southern Cyprus. Geological Magazine 117, 547–63.CrossRefGoogle Scholar
Taketani, Y. 1982. Cretaceous radiolarian biostratigraphy of the Urakawa and Obira areas, Hokkaido. Science Reports of the Tohoku University, Sendai, Series 2, Geology 53, 175.Google Scholar
Thurow, J. 1988. Cretaceous radiolarians of the North Atlantic Ocean: ODP Leg 103 (Sites 638, 640, and 641) and DSDP Legs 93 (Site 603) and 47B (Site 398). Proceedings of the Ocean Drilling Program, Scientific Results 103, 379418.Google Scholar
Thurow, J. 1991. Upper Cretaceous radiolarians from Cyprus-evidence for increased productivity/preservation during global paleoceanographic events. Abstracts volume, 6th meeting of the International Association of Radiolarian Paleontologists, Firenze 1991, 81.Google Scholar
Vogler, J. 1941. Ober-Jura and Kreide von Misol (Niederländisch-Ostindien). Palaeontographica 4 (suppl.), 243–93.Google Scholar
Voorwijk, G. H. 1937. Foraminifera from the Upper Cretaceous of Habana, Cuba. Proceedings of the Koninklijke Nederlandse Akademie, Wetenschappen 40, 190–8.Google Scholar
White, M. P. 1928. Some index Foraminifera of the Tampica Embayment area of Mexico (Part II). Journal of Paleontology 2, 208317.Google Scholar
Wilson, R. A. M. 1959. The Geology and Mineral Resources of the Xeros-Troodos Area. Geological Department of Cyprus Memoir no. 1, 135 pp.Google Scholar
Zomenis, S. L., Wagner, W. & Ploethner, D. 1988. Groundwater Quality Investigations in Cyprus – Main Results of a Project of Technical Co-operation in Applied Sciences. Bulletin of the Geological Survey Department, Nicosia, Cyprus no. 8, 39 pp.Google Scholar