Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:13:53.808Z Has data issue: false hasContentIssue false

The Thrace Basin and the Black Sea: the Eocene–Oligocene marine connection

Published online by Cambridge University Press:  18 September 2017

ARAL I. OKAY*
Affiliation:
Istanbul Technical University, Eurasia Institute of Earth Sciences, Maslak 34469, Istanbul, Turkey Istanbul Technical University, Faculty of Mines, Department of Geology, Maslak 34469, Turkey
ERCAN ÖZCAN
Affiliation:
Istanbul Technical University, Faculty of Mines, Department of Geology, Maslak 34469, Turkey
AYNUR HAKYEMEZ
Affiliation:
General Directorate of Mineral Research and Expolaration (MTA), Department of Geological Research, 06800 Ankara, Turkey
MUZAFFER SIYAKO
Affiliation:
3S Kale Enerji Üretim A. Ş., Güngören, Istanbul, Turkey
GÜRSEL SUNAL
Affiliation:
Istanbul Technical University, Faculty of Mines, Department of Geology, Maslak 34469, Turkey
ANDREW R.C. KYLANDER-CLARK
Affiliation:
University of California Santa Barbara, Department of Earth Sciences, Santa Barbara, CA 93106USA
*
Author for correspondence: [email protected]

Abstract

The Late Cretaceous – Recent West Black Sea Basin and the Eocene–Oligocene Thrace Basin are separated by the Strandja arch comprising metamorphic and magmatic rocks. Since Late Cretaceous time the Strandja arch formed a palaeo-high separating the two basins which accumulated clastic sediment of >9 km thickness. During late Eocene – early Oligocene time the marine connection between these basins existed through the Çatalca gap west of Istanbul. The Çatalca gap lies on the damage zone of a major Cretaceous strike-slip fault; it formed a 15 km wide marine gateway, where carbonate-rich sediments of thickness c. 350 m were deposited. The sequence consists of upper Eocene shallow marine limestones (SBZ18-20) overlain by upper Eocene – lower Oligocene (P16-P19 zones) pelagic marl with a rich fauna of planktonic foraminifera; the marls are intercalated with 31–32 Ma acidic tuff and calc-arenite beds. The Çatalca gap is bounded in the west by a major normal fault, which marks the eastern boundary of the Thrace Basin. Seismic reflection profiles, well data and zircon U–Pb ages indicate that the Thrace Basin sequence west of the fault is late Eocene – middle Oligocene (37–27 Ma) in age and that the fault has accommodated 2 km of subsidence. Although there was a marine connection between the West Black Sea and Thrace basins during late Eocene – early Oligocene time, no significant exchange of clastic sediment took place. Sedimentation in the Çatalca gap ended abruptly during early Oligocene time by uplift, and this eventually led to the paralic conditions in the Thrace Basin.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akartuna, M. 1953. Geology of the Çatalca-Karacaköy Region (in Turkish). University of Istanbul, Istanbul Üniversitesi Fen Fakültesi Monografileri 13, 88 pp.Google Scholar
Arpat, E. 2017. The sediments of an Early Miocene river system developed from the Marmara Sea area toward the Black Sea. Proceedings of the 5th Symposium on the Geology of Istanbul, Istanbul, 12–14 May 2017, 73–83.Google Scholar
Baykal, A. F. 1943. La Géologie de la Région de Şile (Bithynie-Anatolie). University of Istanbul, Istanbul Üniversitesi Fen Fakültesi Monografileri 3, 233 pp.Google Scholar
Baykal, A. F. & Önalan, M. 1980, Şile sedimentary melange (Şile Olistostrome) (in Turkish). Proceedings of the Altınlı Symposium, Ankara. Türkiye Jeoloji Kurumu, 1525.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P. & Hardenbol, J.), pp. 129212. Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication 54.Google Scholar
Burchfiel, B. C., Nakov, R., Dumurdzanov, N., Papanikolaou, D., Tzankov, T., Serafimovski, T., King, R. W., Kotzev, V., Todosov, A. & Nurce, B. 2008. Evolution and dynamics of the Cenozoic tectonics of the South Balkan extensional system. Geosphere 4, 919–38.Google Scholar
Cattò, S., Cavazza, W., Zattin, M. & Okay, A.I. 2017. No significant Alpine-age tectonic overprint of the Cimmerian Strandja Massif (SE Bulgaria and NW Turkey). International Geology Review, published online 17 July 2017, doi: 10.1080/00206814.2017.1350604Google Scholar
Cavazza, W., Caracciolo, L., Critelli, S., d'Atri, A. & Zuffaa, G. G. 2013. Petrostratigraphic evolution of the Thrace Basin (Bulgaria, Greece, Turkey) within the context of Eocene-Oligocene post-collisional evolution of the Vardar-İzmir-Ankara suture zone. Geodinamica Acta 26, 2755.Google Scholar
Coccioni, R., Montanari, A., Bellanca, A., Bice, D. M., Brinkhuis, H., Church, N., Deino, A., Lirer, F., Macalady, A., Maiorano, P., Marsili, A., McDaniel, A., Monechi, S., Neri, R., Nini, C., Nocchi, M., Pross, J., Rochette, P., Sagnotti, L., Sprovieri, M., Tateo, F., Touchard, Y., Van Simaeys, S. & Williams, G. L. 2008. Integrated stratigraphy of the Oligocene pelagic sequence in the Umbria-Marche basin (Northeastern Apennines, Italy): a potential Global Stratotype Section and Point (GSSP) for the Rupelian/Chattian boundary. Geological Society of America Bulletin 120, 487511.Google Scholar
Costa, E., Garcés, M., López-Blanco, M., Serra-Kiel, J., Bernaola, G., Cabrera, L. & Beamud, E. 2013. The Bartonian-Priabonian marine record of the eastern South Pyrenean foreland basin (NE Spain): a new calibration of the larger foraminifers and calcareous nannofossil biozonation. Geologica Acta 11, 177–93.Google Scholar
D'Atri, A., Zuffa, G. G., Cavazza, W., Okay, A. I. & Di Vincenzo, G. 2012. Detrital supply from subduction/accretion complexes to the Eocene–Oligocene post-collisional southern Thrace Basin (NW Turkey and NE Greece). Sedimentary Geology 243–4, 117–29.Google Scholar
Doust, H. & Arıkan, Y. 1974. The geology of the Thrace Basin. Proceedings of the 2nd Petroleum Congress of Turkey, Ankara, 119–36.Google Scholar
Ediger, V. & Alışan, C. 1989. Tertiary fungal and algal palynomorph biostratigraphy of the northern Thrace basin, Turkey. Revue Palaeobotany and Palynology 58, 139–61.Google Scholar
Eleftheriadis, G. & Lippold, H. J. 1984. Altersbestimmungen zum oligozanen Vulkanismus der Süd-Rhodopen/Nord-Griechenland. Neues Jahrbuch für Geologie und Paleontologie Monatshefte 3, 179–91.Google Scholar
Ercan, T., Türkecan, A., Gailou, H., Satır, M., Sevin, D. & Şaroğlu, F. 1998. Features of the Tertiary volcanism around Sea of Marmara. Bulletin Mineral Research and Exploration 120, 97118.Google Scholar
Erentöz, C. 1949. About the geology of the Çatalca massif and its surroundings (in Turkish). Istanbul Üniversitesi Fen Fakültesi Mecmuası; B14, 307–20.Google Scholar
Ergintav, S., Demirbağ, E., Ediger, V., Saatçılar, R., İnan, S., Cankurtaranlar, A., Dikbaş, A. & Baş, M. 2011. Structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian fault. Geophysical Journal International 185, 93105.Google Scholar
Gawthorpe, R. L. & Leeder, M. R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12, 195218.Google Scholar
Gedik, İ., Timur, E., Umut, M., Bilgin, A. Z., Pehlivan, Ş., Duru, M., Şentürk, K., Özcan, İ. & Çelik, Y. 2014. Geological Maps of Turkey, 1: 50 000 scale Istanbul F21-a sheet and explanatory notes. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, 40 pp.Google Scholar
Georgiev, G. 2012. Geology and hydrocarbon systems in the Western Black Sea. Turkish Journal of Earth Sciences 21, 723–54.Google Scholar
Gökçen, N. 1973. Etude paleontologique (Ostracodes) et stratigraphique de niveaux du Paleogene du Sud-Est de la Thrace. Ankara: Maden Tetkik ve Arama Publications, No. 147, 101 pp.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. 2012. The Geologic Time Scale 2012. The Netherlands: Elsevier.Google Scholar
Gültekin, A. H. 1998. Geochemistry and origin of the Oligocene Binkılıç manganese deposit; Thrace Basin, Turkey. Turkish Journal of Earth Sciences 7, 1123.Google Scholar
Hoşgörmez, H. & Yalçın, M. N. 2005. Gas-source rock correlation in Thrace basin, Turkey. Marine and Petroleum Geology 22, 901–16.Google Scholar
Huvaz, O., Sarikaya, H. & Nohut, Ö. M. 2005. Nature of a regional dogleg pattern in maturity profiles from Thrace basin, northwestern Turkey: A newly discovered unconformity or a thermal anomaly. American Association of Petroleum Geologists Bulletin 89, 1373–96.Google Scholar
İslamoğlu, Y., Harzhauser, M., Gross, M., Jimenez-Moreno, G., Coric, S., Kroh, A., Rögl, F. & van der Made, J. 2008. From Tethys to Eastern Paratethys: Oligocene depositional environments, paleoecology and paleobiogeography of the Thrace Basin (NW Turkey). International Journal of Earth Sciences 99, 183200.Google Scholar
Juranov, S. 1992. Stratigraphy of the Eocene Series in the Burgas district. Review of the Bulgarian Geological Society 53, 4759.Google Scholar
Karcioğlu, G., Tank, S. B., Gürer, A., Çiftçi, E. T., Kaya, T. & Tunçer, M. K. 2013. Upper crustal electrical resistivity structures in the vicinity of the Çatalca Fault, Istanbul, Turkey by magnetotelluric data. Studia Geophysica et Geodaetica 57, 292308.Google Scholar
Kopp, K. O., Pavoni, N. & Schindler, C. 1969. Geologie Thrakiens IV: Das Ergene Becken. Geologische Bundesanstalt, Hannover, Beihefte zum Geologischen Jahrbuch no. 76, 136 pp.Google Scholar
Kylander-Clark, A. R. C., Hacker, B. R. & Cottle, J. M. 2013. Laser-ablation split-stream ICP petrochronology. Chemical Geology 345, 99112.Google Scholar
Lebküchner, R. F. 1974. Beitrag zur Kenntnis des Geologie des Oligozäns von Mittel Thrakien (Türkei). Bulletin of the Mineral Research and Exploration 83, 130.Google Scholar
Less, Gy. & Özcan, E. 2012. Bartonian-Priabonian larger benthic foraminiferal events in the Western Tethys. Austrian Journal of Earth Sciences 105, 129–40.Google Scholar
Less, Gy., Özcan, E. & Okay, A. I. 2011. Stratigraphy and larger foraminifera of the Middle Eocene to Lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 20, 793845.Google Scholar
Menlikli, C., Demirer, A., Sipahioğlu, Ö., Körpe, L. & Aydemir, V. 2009. Exploration plays in the Turkish Black Sea. The Leading Edge 28, 1066–75.Google Scholar
Natal'in, B. & Say, A. G. 2015. Eocene–Oligocene stratigraphy and structural history of the Karaburun area, southwestern Black Sea coast, Turkey: transition from extension to compression. Geological Magazine 152, 1104–22.Google Scholar
Nikishin, A. M., Okay, A. I., Tüysüz, O., Demirer, A., Amelin, N. & Petrov, E. 2015a. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology 59, 638–55.Google Scholar
Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N. & Petrov, E. 2015 b. The Black Sea basins structure and history: New new model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology 59, 656–70.Google Scholar
Okay, A. I., Şengör, A. M. C. & Görür, N. 1994. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22, 267–70.Google Scholar
Okay, A. I., Sunal, G., Tüysüz, O., Sherlock, S., Keskin, M. & Kylander-Clark, A. R. C. 2014. Low-pressure–high-temperature metamorphism during extension in a Jurassic magmatic arc, Central Pontides, Turkey. Journal of Metamorphic Geology 32, 4969.Google Scholar
Oktay, F. Y., Eren, R. H. & Sakınç, M. 1992. Sedimentary geology of the eastern Thrace Oligocene basin in the region of Karaburun-Yeniköy (Istanbul) (in Turkish). Proceedings of the 9th Petroleum Congress of Turkey, Ankara, 17–21 February 1992, 92–101.Google Scholar
Ozansoy, F. 1962. Les anthrocothériens de l'oligocene inférieur de la Thrace orientale (Turquie). Bulletin of the Mineral Research and Exploration 58, 8596.Google Scholar
Özcan, E., Less, Gy., Baldi-Beke, M., Kollanyi, K. & Kertesz, B. 2006. Biometric analysis of middle and upper Eocene Discocyclinidae and Orbitoclypeidae (Foraminifera) from Turkey and updated orthophragmine Zonation in the Western Tethys. Micropaleontology 52, 485520.Google Scholar
Özcan, E., Less, Gy. & Kertész, B. 2007. Late Ypresian to Middle Lutetian orthophragminid record from central and northern Turkey: Taxonomy and remarks on zonal scheme. Turkish Journal of Earth Sciences 16, 281321.Google Scholar
Özcan, Z., Okay, A. I., Özcan, E., Hakyemez, A. & Özkan-Altıner, S. 2012. Late Cretaceous - Eocene geological evolution of the Pontides in northwest Turkey between the Black Sea coast and Bursa. Turkish Journal of Earth Sciences 21, 933–60.Google Scholar
Özgül, N. 2012. Stratigraphy and some structural features of the Istanbul Palaeozoic. Turkish Journal of Earth Sciences 21, 817–66.Google Scholar
Öztürk, H. & Frakes, L. A. 1995. Sedimentation and diagenesis of an Oligocene manganese deposit in a shallow subbasin of the Paratethys: Thrace Basin, Turkey. Ore Geology Reviews 10, 117–32.Google Scholar
Papazzoni, C. A., Cosovic, V., Briguglio, A. & Drobne, K. 2017. Towards a calibrated larger foraminifera biostratigraphic zonation: celebrating 18 years of the application of shallow benthic zones. Palaios 32, 15.Google Scholar
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C. & Berggren, W. A. 2006. Atlas of Eocene planktonic foraminifera. Cushman Foundation for Foraminiferal Research, Fredericksburg, USA, Special Publication no. 41, 513 pp.Google Scholar
Perinçek, D. 1991. Possible strand of the North Anatolian Fault in the Thrace Basin, Turkey: an interpretation. American Association of Petroleum Geologists Bulletin 75, 241–57.Google Scholar
Perinçek, D., Ataş, N., Karatut, Ş. & Erensoy, E. 2015. Geological factors controlling potential of lignite beds within the Danişmen Formation in the Thrace Basin. Bulletin of the Mineral Research and Exploration 150, 77107.Google Scholar
Robinson, A. G., Rudat, J. H., Banks, C. J. & Wiles, R. L. F. 1996. Petroleum geology of the Black Sea. Marine and Petroleum Geology 13, 195223.Google Scholar
Rodelli, D., Jovane, L., Özcan, E., Giorgioni, M., Coccioni, R., Frontalini, F., Siciliano, E. R., Brogi, A., Catanzariti, R., Less, Gy. & Rostami, M. A. 2016. High-resolution integrated magnetobiostratigraphy of a new Middle Eocene section from the southern branch of the Neo-Tethys: Elazığ Basin (Elazığ province, Turkey). AGU poster abstract GP43B-1246, available at: http://adsabs.harvard.edu/abs/2016AGUFMGP43B1246R.Google Scholar
Rögl, F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica 50, 339–49.Google Scholar
Rojkovič, I., Soták, J., Konečný, P. & Čech, P. 2008. Stratiform manganese mineralization in the Paleogene and Jurassic shale formations of the Western Carpathians: mineralogy, geochemistry and ore-forming processes. Geologica Carpathica 59, 503–14.Google Scholar
Sachsenhofer, R. F., Stummer, B., Georgiev, G., Dellmour, R., Bechtel, A., Gratzer, R. & Coric, S. 2009. Depositional environment and hydrocarbon source potential of the Oligocene Ruslar Formation (Kamchia Depression; Western Black Sea). Marine and Petroleum Geology 26, 5784.Google Scholar
Sakınç, M. 1994. Stratigraphy and paleontology of the Karaburun (Istanbul) marine Oligocene (in Turkish). Maden Tetkik ve Arama Dergisi 116, 914.Google Scholar
Saner, S. 1980. Plate tectonic explanation of the basins in the western Pontides and neighbouring areas, northwest Turkey (in Turkish). Maden Tetkik ve Arama Dergisi 93/94, 119.Google Scholar
Şenol, M. 1980. Depositional environment of Oligocene units and lignite formations in the Keşan (Edirne) and Marmara Ereğlisi (Tekirdağ) regions (in Turkish). Türkiye Jeoloji Kurumu Bülteni 23, 133–40.Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A. K., Less, Gy., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J. & Zakrevskaya, E. 1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societé Géologique de France 169, 281–99.Google Scholar
Sinclair, H. D., Juranov, S. G., Georgiev, G., Byrne, P. & Mountney, N. P. 1997. The Balkan thrust wedge amd foreland basin of eastern Bulgaria: structural and stratigraphic development. In Regional and Petroleum Geology of the Black Sea and Surrounding Region (ed. Robinson, A. G.), pp. 91114. American Association of Petroleum Geologists, Memoir no. 68.Google Scholar
Siyako, M. 2006. “Lignitic sandstones” of the Trakya Basin. Bulletin of the Mineral Research and Exploration 132, 6372.Google Scholar
Siyako, M. & Huvaz, O. 2007. Eocene stratigraphic evolution of the Thrace Basin, Turkey. Sedimentary Geology 198, 7591.Google Scholar
Soták, J., Pereszlenyi, M., Marschalko, R., Milička, J. & Starek, D. 2001. Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the central Carpathian Paleogene Basin (NE Slovakia). Marine and Petroleum Geology 18, 87114.Google Scholar
Steininger, F. F. & Wessely, G. 1999. From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft 92, 95116.Google Scholar
Suc, J. P., Gillet, H., Çağatay, M. N., Popescu, S.-M., Lericolais, G., Armijo, R., Melinte-Dobrinescu, M. C., Şen, Ş., Clauzon, G., Sakınç, M., Zabcı, C., Ucarkus, G., Meyer, B., Çakir, Z., Karakaş, Ç., Jouannic, G. & Macalet, R. 2015. The region of the Strandja Sill (North Turkey) and the Messinian events. Marine and Petroleum Geology 66, 149–64.Google Scholar
Turgut, S. & Eseller, G. 2000. Sequence stratigraphy, tectonics and depositional history in Eastern Thrace Basin, NW Turkey. Marine and Petroleum Geology 17, 61100.Google Scholar
Turgut, S., Türkarslan, M. & Perinçek, D. 1991. Evolution of the Thrace sedimentary basin and its hydrocarbon prospectivity. In Generation, Accumulation, and Production of Europe's Hydrocarbons (ed. Spencer, A. M.), pp. 415–37. European Association of Petroleum Geoscientists, Special Publication no. 1.Google Scholar
Ünay-Bayraktar, E. 1989. Rodents from the Middle Oligocene of Turkish Thrace. Utrecht Micropaleontological Bulletins, Special Publication no. 5, 120 pp.Google Scholar
Varentsov, I. M. 2002. Genesis of the Eastern Paratethys manganese ore giants: impact of events at the Eocene/Oligocene boundary. Ore Geology Reviews 20, 6582.Google Scholar
Yurtsever, A. & Çağlayan, A. 2002. Geological maps of Turkey, 1. 100 000 scale, Istanbul F21 and G21 sheet and explanatory text. Ankara: Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, 30 pp.Google Scholar
Supplementary material: File

Okay et al. supplementary material

Table S1

Download Okay et al. supplementary material(File)
File 23.2 KB
Supplementary material: File

Okay et al. supplementary material

Table S2

Download Okay et al. supplementary material(File)
File 13.6 KB
Supplementary material: File

Okay et al. supplementary material

Table S3

Download Okay et al. supplementary material(File)
File 19.9 KB
Supplementary material: File

Okay et al. supplementary material

Table S4

Download Okay et al. supplementary material(File)
File 22.6 KB
Supplementary material: File

Okay et al. supplementary material

Table S5

Download Okay et al. supplementary material(File)
File 21.2 KB