Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T03:37:21.925Z Has data issue: false hasContentIssue false

Testing a back-arc ‘aulacogen’ model for the Central Metasedimentary Belt of the Grenville Province

Published online by Cambridge University Press:  11 December 2015

ALAN DICKIN*
Affiliation:
School of Geography and Earth Sciences, McMaster University
EDEN HYNES
Affiliation:
School of Geography and Earth Sciences, McMaster University
JACOB STRONG
Affiliation:
School of Geography and Earth Sciences, McMaster University
MARK WISBORG
Affiliation:
School of Geography and Earth Sciences, McMaster University
*
*Author for correspondence: [email protected]

Abstract

Nearly 70 new Nd isotope analyses are presented for plutonic orthogneisses from the Grenvillian Central Metasedimentary Belt (CMB) in order to test a back-arc aulacogen model for its origin. Nd isotope signatures of metaplutonic rocks are used as probes of the formation age of the crust at depth, revealing sharp boundaries between old crustal blocks and juvenile (1.2–1.35 Ga) Elzevirian-age crust. Firstly, a hidden block of old crustal basement is revealed between areas of juvenile crust south of Douglas, Ontario. Secondly, TDM ages refine the boundary between juvenile crust and old basement (1.35–1.55 Ga) within the Weslemkoon batholith, showing this pluton to be a polygenetic stitching pluton that straddles a hidden crustal boundary. Finally, the CMB boundary zone is shown to form a sharp age boundary between juvenile and old crustal domains, and is interpreted as a reactivated rift-bounding normal fault. When the distribution of rift-related alkaline rocks is compared with these crustal boundaries, the Bancroft nepheline syenite suite is centrally located in a juvenile ensimatic zone between blocks of old basement. Such a location, near the axis of a juvenile crustal segment, implies emplacement late in the rifting process. Similarly, the Blue Mountain nepheline syenite appears to post-date an earlier rifting event to the southeast. Hence, a multi-stage model is proposed for the evolution of a back-arc aulacogen, which is consistent with the distribution of marble and volcanic/plutonic units in the CMB. The model places the Bancroft nepheline syenites in a precise plate tectonic context for the first time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baer, A. J. 1976. The Grenville Province in Helikian times: a possible model of evolution. Philosophical Transactions of the Royal Society of London A280, 499515.Google Scholar
Bartholomew, M. J. & Hatcher, R. D. 2010. The Grenville orogenic cycle of southern Laurentia: unraveling sutures, rifts, and shear zones as potential piercing points for Amazonia. Journal of South American Earth Sciences 29, 420.Google Scholar
Beutel, E., van Wijk, J., Ebinger, C., Keir, D. & Agostini, A. 2010. Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts. Earth and Planetary Science Letters 293, 225–35.CrossRefGoogle Scholar
Boyce, J. I. & Morris, W. A. 2002. Basement-controlled faulting in Palaeozoic strata in southern Ontario, Canada: new evidence from geophysical lineament mapping. Tectonophysics 353, 151–71.Google Scholar
Brown, R. L., Chappell, J. F., Moore, J. M. & Thompson, P. H. 1975. An ensimatic island arc and ocean closure in the Grenville Province of south-eastern Ontario, Canada. Geoscience Canada 2, 141–44.Google Scholar
Burke, K. C., Khan, S. D. & Mart, W. 2008. Grenville Province and Monteregian carbonatite and nepheline syenite distribution related to rifting, collision, and plume passage. Geology 36, 983–6.Google Scholar
Burr, J. L. & Carr, S. D. 1994. Structural geometry and U–Pb geochronology near Lithoprobe, seismic line 32, western Central Metasedimentary Belt, Grenville province, Ontario. In Lithoprobe Abitibi-Grenville Project, Report No. 41, pp. 59–62.Google Scholar
Carr, S. D., Easton, R. M., Jamieson, R. A. & Culshaw, N. G. 2000. Geologic transect across the Grenville orogen of Ontario and New York. Canadian Journal of Earth Sciences 37, 193216.Google Scholar
Coint, N., Barnes, C. G., Yoshinobu, A. S., Chamberlain, K. R. & Barnes, M. A. 2013. Batch-wise assembly and zoning of a tilted calc-alkaline batholith: field relations, timing, and compositional variation. Geosphere 9, 1729–46.CrossRefGoogle Scholar
Chiarenzelli, J. R., Hudson, M. R., Dahl, P. S. & deLorraine, W. D. 2012. Constraints on deposition in the Trans-Adirondack Basin, Northern New York: composition and origin of the Popple Hill Gneiss. Precambrian Research 214–215, 154–71.Google Scholar
Chiarenzelli, J., Regan, S., Peck, W. H., Selleck, B. W., Cousens, B., Baird, G. B. & Shrady, C. H. 2010. Shawinigan arc magmatism in the Adirondack Lowlands as a consequence of closure of the Trans-Adirondack backarc basin. Geosphere 6, 900–16.CrossRefGoogle Scholar
Corfu, F. & Easton, R. M. 1995. U–Pb geochronology of the Mazinaw terrane, an imbricate segment of the Central Metasedimentary Belt, Grenville Province, Ontario. Canadian Journal of Earth Sciences 32, 959–76.Google Scholar
Davis, D. W. & Bartlett, J. R. 1988. Geochronology of the Belmont Lake Metavolcanic Complex and implications for crustal development in the Central Metasedimentary Belt, Grenville Province, Ontario. Canadian Journal of Earth Sciences 25, 1751–9.Google Scholar
Debon, F. & LeFort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 135–49.Google Scholar
DePaolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.Google Scholar
Dewey, J. F. & Burke, K. C. 1973. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. Journal of Geology 81, 683–92.Google Scholar
Dhuime, B., Hawkesworth, C. & Cawood, P. 2010. When continents formed. Science 331, 154–5.Google Scholar
Dickin, A. P. 1998. Pb isotope mapping of differentially uplifted Archean basement: a case study from the Grenville Province, Ontario. Precambrian Research 91, 445–54.Google Scholar
Dickin, A. P. 2005. Radiogenic Isotope Geology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dickin, A. P., Herrell, M., Moore, E., Cooper, D. & Pearson, S. 2014. Nd isotope mapping of allochthonous Grenvillian klippen: evidence for widespread ‘ramp-flat’ thrust geometry in the SW Grenville Province. Precambrian Research 246, 268–80.CrossRefGoogle Scholar
Dickin, A. P. & McNutt, R. H. 1989. Nd model age mapping of the southeast margin of the Archean foreland in the Grenville province of Ontario. Geology 17, 299302.Google Scholar
Dickin, A. P. & McNutt, R. H. 1990. Nd model-age mapping of Grenville lithotectonic domains: Mid-Proterozoic crustal evolution in Ontario, In Mid-Proterozoic Laurentia–Baltica (eds Gower, C. F., Rivers, T. & Ryan, B.), pp. 7994. Geological Association of Canada Special Paper 38.Google Scholar
Dickin, A. P. & McNutt, R. H. 2007. The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence. Earth and Planetary Science Letters 259, 97106.Google Scholar
Dickin, A., McNutt, R. H., Martin, C. & Guo, A. 2010. The extent of juvenile crust in the Grenville Province: Nd isotope evidence. Geological Society of America Bulletin 122, 870–83.CrossRefGoogle Scholar
Dickin, A. & North, R. 2015. Nd isotope mapping of the Allochthon Boundary Thrust on the shores of Georgian Bay, Ontario: significance for Grenvillian crustal structure and evolution. Geological Magazine 152, 9931008.Google Scholar
Easton, R. M. 1992. The Grenville Province and the Proterozoic history of central and southern Ontario. In Geology of Ontario, Ontario Geological Survey Special Paper 4, part 2, pp. 714–904.Google Scholar
Easton, R. M. 2004. Project Unit 04–013. Geology, tectonic history and controls on gold mineralization in the western Grimsthorpe domain, Central Metasedimentary Belt, Grenville Province. Summary of Fieldwork 2004, Ontario Geological Survey Open File Report 6145, 14–1 to 14–21.Google Scholar
Easton, R. M. 2006. Precambrian Geology, Cloyne–Plevna–Ompah Area; Ontario Geological Survey, Preliminary Map P.3443, scale 1:50 000. Ontario Geological Survey.Google Scholar
Easton, R. M. & Kamo, S. L. 2011. Harvey-Cardiff domain and its relationship to the Composite Arc Belt, Grenville Province: insights from U–Pb geochronology and geochemistry. Canadian Journal of Earth Sciences 48, 347–70.Google Scholar
Forsyth, D. A., Milkereit, B., Zelt, C. A. & White, D. J. 1994. Deep structure beneath Lake Ontario: crustal-scale Grenville subdivisions. Canadian Journal of Earth Sciences 31, 255–70.CrossRefGoogle Scholar
Girardi, J. D., Patchett, P. J., Ducea, M. N., Gehrels, G. E., Cecil, M. R., Rusmore, M. E., Woodsworth, G. J., Pearson, D. M., Manthei, C. & Wetmore, P. 2012. Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains Batholith, British Columbia. Journal of Petrology 53, 1505–36.CrossRefGoogle Scholar
Hanmer, S., Corrigan, D., Pehrsson, S. & Nadeau, L. 2000. SW Grenville Province, Canada: the case against post-1.4 Ga accretionary tectonics. Tectonophysics 319, 3351.CrossRefGoogle Scholar
Hanmer, S. & McEachern, S. 1992. Kinematical and rheological evolution of a crustal scale ductile thrust zone, Central Metasedimentary Belt, Grenville orogen, Ontario. Canadian Journal of Earth Sciences 29, 1779–90.Google Scholar
Heaman, L. M., McNutt, R. H. & Krogh, T. E. 1986. Geological significance of U–Pb and Rb–Sr ages for two pre-tectonic granites from the Central Metasedimentary Belt, Ontario. In The Grenville Province (eds Moore, J. M., Davidson, A. & Baer, A. J.), pp. 209–21 Geological Association of Canada Special Paper 31.Google Scholar
Hildebrand, R. S. & Easton, R. M. 1995. An 1161 Ma suture in the Frontenac terrane, Ontario segment of the Grenville orogen, Geology 23, 917–20.Google Scholar
Holm, P. E., Smith, T. E., Grant, B. D. & Huang, C. H. 1985. The geochemistry of the Turriff metavolcanics, Grenville Province, southeastern Ontario. Canadian Journal of Earth Sciences 22, 435–41.CrossRefGoogle Scholar
Holm, P. E., Smith, T. E., Huang, C. H., Gerasimoff, M., Grant, B. & McLaughlin, K. 1986. Geochemistry of metavolcanic rocks and dykes from the Central Metasedimentary Belt, Grenville Province, southeastern Ontario. In The Grenville Province (eds Moore, J. M., Davidson, A. & Baer, A. J.), pp. 255–69. Geological Association of Canada Special Paper 31.Google Scholar
Jackson, S. L. & Fyon, J. A. 1991. The Western Abitibi Subprovince in Ontario. In Geology of Ontario (eds Thurston, P. C., Williams, H. R., Sutcliffe, R. H. & Stott, G. M.), pp. 405–84. Ontario Geological Survey Special volume 4, Part 1.Google Scholar
Jamieson, R. A., Beaumont, C., Warren, C. J. & Nguyen, M. H. 2010. The Grenville Orogen explained? Applications and limitations of integrating numerical models with geological and geophysical data. Canadian Journal of Earth Sciences 47, 517–39.Google Scholar
Krogh, T. E. & Hurley, P. M. 1968. Strontium isotope variations and whole rock isochron studies, Grenville Province of Ontario. Journal of Geophysical Research 73, 7107–25.CrossRefGoogle Scholar
Leat, P. T., Thompson, R. N., Dickin, A. P., Morrison, M. A. & Hendry, G. L. 1989. Quaternary volcanism in northwestern Colorado: implications for the roles of asthenosphere in the genesis of continental basalts. Journal of Volcanology and Geothermal Research 37, 291310.Google Scholar
Lumbers, S. B., Heaman, L. M., Vertolli, V. M. & Wu, T.-W. 1990. Nature and timing of Middle Proterozoic magmatism in the Central Metasedimentary Belt, Ontario. In Mid-Proterozoic Laurentia-Baltica (eds Gower, C. F., Rivers, T. & Ryan, B.), pp. 243–76. Geological Association of Canada Special Paper 38.Google Scholar
Lumbers, S. B. & Vertolli, V. M. 2001. Precambrian Geology, Denbigh Area. Ontario Geological Survey, Preliminary map P 3437, 1:50 000 scale. Ontario Geological Survey.Google Scholar
Martignole, J. 1992. Exhumation of high-grade terranes – a review. Canadian Journal of Earth Sciences 29, 737–45.Google Scholar
McNutt, R. H. & Dickin, A. P. 2012. A comparison of Nd model ages and U–Pb zircon ages of Grenville granitoids: constraints on the evolution of the Laurentian margin from 1.5 to 1.0 Ga. Terra Nova 24, 715.Google Scholar
Moretton, K. & Dickin, A. P. 2013. Nd isotope mapping of the Dysart gneiss complex: evidence for a rifted block within the Central Metasedimentary Belt of the Grenville Province. Precambrian Research 228, 223–32.Google Scholar
Natali, C., Beccaluva, L., Bianchini, G. & Siena, F. 2013. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume. Contributions to Mineralogy and Petrology 166, 351–70.Google Scholar
Nelson, B. K. & DePaolo, D. J. 1985. Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American mid-continent. Geological Society of America Bulletin 96, 746–54.Google Scholar
Pehrsson, S., Hanmer, S. & van Breemen, O. 1996. U–Pb geochronology of the Raglan gabbro belt, Central Metasedimentary Belt, Ontario: implications for an ensialic marginal basin in the Grenville Orogen. Canadian Journal of Earth Sciences 33, 691702.Google Scholar
Pride, C. & Moore, J. M. 1983. Petrogenesis of the Elzevir batholith and related trondhjemitic intrusions in the Grenville Province of Eastern Ontario, Canada. Contributions to Mineralogy and Petrology 82, 187–94.Google Scholar
Rivers, T. 2012. Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Canadian Journal of Earth Sciences 49, 142.Google Scholar
Rivers, T. & Corrigan, D. 2000. Convergent margin on southeastern Laurentia during the Mesoproterozoic: tectonic implications. Canadian Journal of Earth Sciences 37, 359–83.Google Scholar
Rivers, T., Martignole, J., Gower, C. F. & Davidson, A. 1989. New tectonic divisions of the Grenville Province, southeastern Canadian Shield. Tectonics 8, 6384.Google Scholar
Roy, B. & Mereu, R. F. 2000. Application of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario. Geophysical Journal International 143, 735–51.Google Scholar
Schwerdtner, W. M., Downey, M. W. & Alexander, S. A. 2004. L-S shape fabrics in the Mazinaw domain and the issue of northwest-directed thrusting in the Composite Arc Belt, southeastern Ontario. In Proterozoic Tectonic Evolution of the Grenville Orogen in North America (eds Tollo, R. P., Corriveau, L., McLelland, J. & Bartholomew, M. J.), pp. 183–207. Geological Society of America Memoir 197.Google Scholar
Schwerdtner, W. M., Serafini, G. & Yakovenko, A. 2005. Straight gneiss zones at the northwestern boundary of the Mazinaw domain, Grenvillian Composite Arc Belt, southeastern Ontario. Geological Association of Canada Annual Meeting, Halifax 2005. Abstracts, p. 173.Google Scholar
Sethuraman, K. & Moore, J. M. 1973. Petrology of metavolcanic rocks in the Bishop Corners – Donaldson area, Grenville Province, Eastern Ontario. Canadian Journal of Earth Sciences 10, 589614.Google Scholar
Slagstad, T., Culshaw, N. G., Daly, J. S. & Jamieson, R. A. 2009. Western Grenville Province holds key to midcontinental Granite-Rhyolite Province enigma. Terra Nova 21, 181–7.Google Scholar
Smith, T. E. & Holm, P. E. 1990. The geochemistry and tectonic significance of pre-metamorphic minor intrusions of the Central Metasedimentary Belt, Grenville province, Ontario. Precambrian Research 48, 341–60.Google Scholar
Streckeisen, A. L. 1973. Plutonic rocks. Classification and nomenclature recommended by the IUGS subcommission on the systematics of igneous rocks. Geotimes 18, 2630.Google Scholar
Thompson, R. N., Ottley, C. J., Smith, P. M., Pearson, D. G., Dickin, A. P., Morrison, M. A., Leat, P. T. & Gibson, S. A. 2005. Source of the Quaternary alkalic basalts, picrites and basanites of the Potrillo Volcanic Field, New Mexico, USA: lithosphere or convecting mantle? Journal of Petrology 46, 1603–43.Google Scholar
Van der Pluijm, B. A. & Carlson, K. A. 1989. Extension in the Central Metasedimentary Belt of the Ontario Grenville: timing and tectonic significance. Geology 17, 161–4.Google Scholar
Workman, R. K. & Hart, S. R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 5372.Google Scholar