Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T22:58:45.124Z Has data issue: false hasContentIssue false

Structural Control of Uranium Mineralization in Australia

Published online by Cambridge University Press:  01 May 2009

J. Rade
Affiliation:
69A Broadway, Nedlands, W.A., Australia.

Abstract

A deep seated flow of geoplasma (bathyrheal underflow) subjected crustal blocks to recurring horizontal movements causing north-east trending faults, shearing along anticlines and rotation of the separate crustal blocks. These movements produced extensive faulting and shattering in the South Alligator River area and north of Katherine, providing suitable loci for uranium mineralization. The mineralization occurs as a late phase open fissure filling and two types occur, (i) the nickel–cobalt–native silver type, and (ii) the quartz–pyrite–galena type. These characteristics provide a guide for future prospecting for uranium in Australia.

Type
Articles
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastin, E. S., 1939. The nickel-cobalt-native silver ore type. Econ. Geol., xxxiv, 1.CrossRefGoogle Scholar
Campbell, D. D., 1957. Geology and ore control at the Verna mine, Beaver-lodge, Saskatchewan. Canadian Min. and Metall. Bull., 1, no. 545, 542.Google Scholar
Christie, A. M., 1953. Goldfields-Martin Lake map-area Saskatchewan. Geol. Surv. Canada, Mem., cclxix.Google Scholar
Condon, M. A., and Walpole, B. P., 1955. Sedimentary environment as a control of uranium mineralization in the Katherine-Darwin region, Northern Territory. Comwlth. Aust. Bur. Min. Res. Geol. Geophys. Report, No. 24.Google Scholar
Department of National Development, Commonwealth of Australia, 1956. The natural occurrence of uranium and thorium in Australia. Proc. Internat. Confer. Peaceful Uses of Atomic Energy, vi, 91.Google Scholar
Everhart, D. L., 1956. Uranium-bearing vein deposits in the United States. U.S. Geol. Surv. Prof. Paper, ccc, 97.Google Scholar
Everhart, D. L., and Wright, R.J., 1953. The geologic character of typical pitchblende veins. Econ. Geol., xlviii, 77.Google Scholar
Fisher, N. H., and Sullivan, C.J., 1954. Uranium exploration by the Bureau of Mineral Resources, Geology and Geophysics, in the Rum Jungle Province, Northern Territory, Australia. Econ. Geol., xlix, 826.Google Scholar
King, D., 1954. Geology of the Crockers Well uranium deposit. Geol. Surv. S. Australia, Bull. xxx, p. 70.Google Scholar
Kraus, E., 1951 a. Vergleichende Baugeschichte der Gebirge, Berlin.Google Scholar
Kraus, E., 1951 b. Die Baugeschichte der Alpen. Berlin.Google Scholar
Kraus, E., 1953. Unterstroemungstheorie und Schwerkrafts-Gleittheorien. Neues Jb. Geol. Pal., vii, 295.Google Scholar
Kraus, E., 1954 a. Der Ausbau der Unterstroemungs (Subfluenz)-Theorie: Hyporheon und Bathryheon. Congrè Geol. Internat., Comptes Rendus 19 Session, Alger, 1952, Sect. 13, p. 85.Google Scholar
Kraus, E., 1954 b. Neue Gedanken zur Entstehung der Alpen. Eclog. Geol. Helvetiae, xlvii, 61.Google Scholar
Kraus, E., 1955 a. Eine genetische Synthese der Erdrinde. Scientia, xlix, ser. 6.Google Scholar
Kraus, E., 1955 b. Ueuber die juengsten Bewegungstendenzen der Alpen. Geol. Rundschau, B., xliii, 108.Google Scholar
Lang, A. H., 1952. Canadian deposits of uranium and thorium. Geol. Surv. Canada, Econ. Geol. Ser., 16.Google Scholar
Matheson, R. S., and Searl, R. A., 1956. Mary Kathleen uranium deposit, Mount Isa-Cloncurry district, Queensland, Australia. Econ. Geol., li, 528.Google Scholar
Noakes, L. C., 1949. A Geological reconnaissance of the Katherine-Darwin region, Northern Territory, with notes on the mineral deposits. Comwlth. Aust. Bur. Min. Res. Geol. Geophys., Bull. xvi.Google Scholar
Noakes, L. C., 1953. The structure of the Northern Territory with relation to mineralization. Geology of Australian Ore Deposits, vol. 1, p. 284. [5th Empire Min. Metall. Congress, Austr. and N.Z.].Google Scholar
Rade, J., 1956. Notes on the geotectonics and uranium mineralization in the northern part of the Northern Territory, Australia. Econ. Geol., li, 354.Google Scholar
Rade, J., 1957. Shearing along anticlines as an important structural feature in uranium mineralization in the northern part of the Northern Territory of Australia. Econ. Geol., lii, p. 282.Google Scholar
Sims, P. K., and Tooker, E. W., 1956. Pitchblende deposits in the Central City district and adjoining areas, Gilpin and Clear Creek Counties, Colorado. U.S. Geol. Surv. Prof. Paper, ccc, 105.Google Scholar
Sprigg, R. C., 1954. Geology of the Radium Hill mining field. Geol. Surv. Australia, Bull., xxx, 7.Google Scholar
Sullivan, C. J., and Matheson, R. S., 1952. Uranium-copper deposits, Rum Jungle, Australia. Econ. Geol., xlvii, 751.Google Scholar
Thurlow, E. E., and Wright, R. J., 1950. Uraninite in the Coeur d'alene district, Idaho. Econ. Geol., xlv, 395.Google Scholar
Traves, D. M., 1955. The geology of the Ord–Victoria region, Northern Australia. Comwlth. Austr. Bur. Min. Res. Geol. Geophys. Bull., xxvii.Google Scholar
Wilmarth, V. R., and Johnson, D. H., 1954. Uranophane at Silver Cliff mine, Lusk, Wyoming. U.S. Geol. Surv. Bull., mix, A.Google Scholar