Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T08:04:58.816Z Has data issue: false hasContentIssue false

A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)

Published online by Cambridge University Press:  03 March 2016

SAMUEL ZAMORA*
Affiliation:
Instituto Geológico y Minero de España, C/Manuel Lasala, 44, 9ºB, 50006, Zaragoza, Spain Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20013–7012, USA
COLIN D. SUMRALL
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
XUE-JIAN ZHU
Affiliation:
State Key Laboratory on Palaeontology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
BERTRAND LEFEBVRE
Affiliation:
UMR CNRS 5276, Géode, Université Lyon 1, 2 rue Dubois, 69622 Villeurbanne cedex, France
*
Author for correspondence: [email protected]

Abstract

The Furongian (late Cambrian) is an extremely poorly sampled time in the history of echinoderms, with only few localities yielding complete specimens. Here, we document an exquisitely preserved stemmed echinoderm from the Furongian Sandu Formation in South China that provides important new data illuminating the origin of Glyptocystitida, a common Palaeozoic clade of echinoderms. Sanducystis sinensis n. gen. n. sp. displays an organized theca bearing three circlets of plates (basal, infralateral and lateral), a laterally positioned periproct in the CD interray, a lack of respiratory pectinirhombs and a stem divided in two parts, with expanded inner and outer columnals proximally and narrow, elongate, homeomorphic columnals distally. A phylogenetic analysis places Sanducystis more derived than the columnal-bearing ‘eocrinoid’ Ridersia and sister group of a clade encompassing Macrocystella-like glyptocystitoid rhombiferans from the Furongian onwards. By filling in an important morphological gap, Sanducystis provides a clear understanding of character evolution within Glyptocystitida.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science 68, 916–23.Google Scholar
Broadhead, T. W. & Sumrall, C. D. 2003. Heterochrony and paedomorphic development of Sprinkleocystis ektopios, new genus and species (Rhombifera, Glyptocystida) from the Middle Ordovician (Carodoc) of Tennessee. Journal of Paleontology 77, 113–20.Google Scholar
Bruguière, J. G. 1791. Tableau Encyclopédique et Méthodique des Trois Règnes de la Nature, contenant l'Helminthologie, ou les Vers Infusoires, les Vers Intestins, les Vers Mollusques, etc., Volume 7. Paris: Panckoucke.Google Scholar
Callaway, C. 1877. On a new area of Upper Cambrian rocks in South Shropshire, with a description of a new fauna. Quarterly Journal of the Geological Society of London 33, 652–72.CrossRefGoogle Scholar
Dzik, J. & Orłowski, S. 1993. The Late Cambrian eocrinoid Cambrocrinus . Acta Palaeontologica Polonica 38, 2134.Google Scholar
Han, N. R. & Chen, G. Y. 2008. New stylophorans (Echinodermata) from the Upper Cambrian of Guangxi, South China. Science in China, Series D: Earth Sciences 51, 181–6.Google Scholar
Jell, P. A., Burrett, C. F. & Banks, M. R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa 9, 183208.Google Scholar
Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I. & Deline, B. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLOS ONE 8 (11), 116.Google Scholar
Kesling, R. V. & Mintz, L. W. 1961. Notes on Lepadocystis moorei (Meek) and Upper Ordovician callocystitid cystoid. University of Michigan Museum of Paleontology Contributions 17, 123–48.Google Scholar
Klein, J. T. 1734. Naturalis dispositio echinodermatum. Accessit lucubratiuncula de aculeis echinorum marinorum, cum spicilegio de belemnitis. Gedani: Schreiber, 79 pp.Google Scholar
Koch, D. L. & Strimple, H. L. 1968. A new Upper Devonian cystoid attached to a discontinuity surface. Iowa Geological Survey Report of Investigations 5, 149.Google Scholar
Lefebvre, B., Sumrall, C. D., Shroat-Lewis, R. A., Reich, M., Webster, G. D., Hunter, A. W., Nardin, E., Rozhnov, S. V., Guensburg, T. E., Touzeau, A., Noailles, F. & Sprinkle, J. 2013. Palaeobiogeography of Ordovician Echinoderms. In Early Palaeozoic Biogeography and Palaeobiogeography (eds Harper, D. A. T. & Servais, T.), pp. 165–90. Geological Society of London, Memoir no. 38.Google Scholar
Lerosey-Aubril, R., Ortega-Hernández, J. & Zhu, X. J. 2013. The first aglaspidid sensu stricto from the Cambrian of China (Sandu Formation, Guangxi). Geological Magazine 150, 565–71.Google Scholar
Paul, C. R. C. 1968. Macrocystella Callaway, the earliest glyptocystitid cystoid. Palaeontology 11, 580600.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids. In Echinoderm Phylogeny and Evolutionary Biology (eds Paul, C. R. C. & Smith, A. B.), pp. 199213. Oxford: Clarendon Press.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Cambridge (Mass): Harvard University Museum of Comparative Zoology, 283 pp.Google Scholar
Sprinkle, J. & Guensburg, T. E. 2003. Major expansion of echinoderms in the early Late Ordovician (Mohawkian, middle Caradoc) and its possible causes. In Ordovician from the Andes (eds. Albanesi, G. L., Beresi, M. S. & Peralta, S. H.), pp. 327–32. Instituto Superior de Correlación Geológica (INSUGEO), Serie Correlación Geológica 17, 552 pp.Google Scholar
Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. In Echinoderms: Durham (eds Harris, L. G., Böttger, S. A., Walker, C. W. & Lesser, M. P.), pp. 269–76. London: CRC Press.Google Scholar
Sumrall, C. D. & Sprinkle, J. 1999. Early ontogeny of the glyptocystitid rhombiferan Lepadocystis moorei . In Echinoderm Research 1998 (eds Carnevali, M. D. C. & Bonasoro, F.), pp. 409–14. Rotterdam: Balkema.Google Scholar
Sumrall, C. D., Sprinkle, J. & Guensburg, T. E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology 71, 1091–109.CrossRefGoogle Scholar
Sumrall, C. D. & Waters, J. A. 2012. Universal elemental homology in glyptocystititoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoan. Journal of Paleontology 86, 956–72.CrossRefGoogle Scholar
Sumrall, C. D. & Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33, 149–63.Google Scholar
Swofford, D. L. 2002. PAUP* version 4.0b10 for Macintosh (computer program and documentation). Sunderland, MA: Sinauer Associates.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire. Geobios 31, 809–29.Google Scholar
Zamora, S. 2012. The first Furongian (late Cambrian) echinoderm from the British Isles. Geological Magazine 149, 940–3.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J-P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C. D., Vizcaïno, D. & Smith, A. B. 2013. Cambrian echinoderm diversity and palaeobiogeography. In Early Palaeozoic Biogeography and Palaeobiogeography (eds Harper, D. A. T. & Servais, T.), pp. 157–71. Geological Society of London, Memoir no. 38.Google Scholar
Zamora, S. & Rahman, I. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57 (6), 1105–19.Google Scholar
Zamora, S. & Smith, A. B. 2012. Cambrian stalked echinoderms show unexpected plasticity of arm construction. Proceedings of the Royal Society B 279, 293–8.CrossRefGoogle ScholarPubMed
Zamora, S., Zhu, X. & Lefebvre, B. 2013. A new Furongian (Cambrian) Echinoderm-Lagerstätte from the Sandu Formation (South China). Cahiers de Biologie Marine 54, 565–9.Google Scholar
Zhan, R.-B., Jin, J., Rong, J.-Y., Zhu, X.-J. & Han, N.-R. 2010. Late Cambrian brachiopods from Jingxi, Guangxi Province, South China. Alcheringa 34, 99133.Google Scholar
Zhou, Z. Y. & Zhen, Y. Y. 2008. Trilobite Record of China. Beijing: Science Press, 402 pp.Google Scholar
Zhou, Z. Y., Zhen, Y. Y., Peng, S. C. & Zhu, X. J. 2008. Notes on Cambrian trilobite biogeography of China. Acta Palaeontologica Sinica 47, 385–92.Google Scholar
Zhu, X. J., Hughes, N. C. & Peng, S. C. 2007. On a new species of Shergoldia Zhang & Jell, 1987 (Trilobita), the family Tsinaniidae and the order Asaphida. Memoirs of the Association of Australasian Palaeontologists 34, 243–53.Google Scholar
Zhu, X. J., Hughes, N. C. & Peng, S. C. 2010. Ventral structure and ontogeny of the late Furongian (Cambrian) trilobite Guangxiaspis guangxiensis Zhou, 1977 and the diphyletic origin of the median suture. Journal of Paleontology 84, 493504.Google Scholar
Zhu, X., Peng, S., Zamora, S., Lefebvre, B. & Chen, G. 2016. Furongian (upper Cambrian) Guole Konservat-Lagerstätte from South China. Acta Geologica Sinica 90, 30–7.Google Scholar
Zhu, X., Zamora, S. & Lefebvre, B. 2014. Morphology and palaeoecology of a new edrioblastoid (Edrioasteroidea) from the Furongian of China. Acta Palaeontologica Polonica 59, 921–6.Google Scholar
Zittel, K. A. 1879. Protozoa, Coelenterata, Echinodermata und Molluscoidea. Handbuch der Paläontologie, Band 1, Paläozoologie. Munich and Leipzig: R. Oldenbourg, 765 pp.Google Scholar